Preferred Language
Articles
/
eRaTGIcBVTCNdQwCZzZc
Drill Bit Selection Optimization Based on Rate of Penetration: Application of Artificial Neural Networks and Genetic Algorithms
...Show More Authors
Abstract<p>The drill bit is the most essential tool in drilling operation and optimum bit selection is one of the main challenges in planning and designing new wells. Conventional bit selections are mostly based on the historical performance of similar bits from offset wells. In addition, it is done by different techniques based on offset well logs. However, these methods are time consuming and they are not dependent on actual drilling parameters. The main objective of this study is to optimize bit selection in order to achieve maximum rate of penetration (ROP). In this work, a model that predicts the ROP was developed using artificial neural networks (ANNs) based on 19 input parameters. For the modeling part, a one-dimension mechanical earth model (1D MEM) parameters, drilling fluid properties, and rig- and bit-related parameters, were included as inputs. The optimizing process was then performed to propose the optimum drilling parameters to select the drilling bit that provides the maximum possible ROP. To achieve this, the corresponding mathematical function of the ANNs model was implemented in a procedure using the genetic algorithm (GA) to obtain operating parameters that lead to maximum ROP. The output will propose an optimal bit selection that provides the maximum ROP along with the best drilling parameters. The statistical analysis of the predicted bit types and optimum drilling parameters comparing the actual flied measured values showed a low root mean square error (RMSE), low average absolute percentage error (AAPE), and high correction coefficient (R2). The proposed methodology provides drilling engineers with more choices to determine the best-case scenario for planning and/or drilling future wells. Meanwhile, the newly developed model can be used in optimizing the drilling parameters, maximizing ROP, estimating the drilling time, and eventually reducing the total field development expenses.</p>
Crossref
View Publication
Publication Date
Sun Apr 29 2012
Journal Name
Journal Of Karbala University
Optimization Quantitative Determination of Cimetidine in Pharmaceutical Preparations via Bromothymol Blue Using Central Composite Design
...Show More Authors

Preview PDF
Publication Date
Thu Oct 01 2020
Journal Name
Alexandria Engineering Journal
Biodegradation of reactive dyes by some bacteria using response surface methodology as an optimization technique
...Show More Authors

Water pollution as a result of contamination with dye-contaminating effluents is a severe issue for water reservoirs, which instigated the study of biodegradation of Reactive Red 195 and Reactive Blue dyes by E. coli and Bacillus sp. The effects of occupation time, solution pH, initial dyes concentrations, biomass loading, and temperature were investigated via batch-system experiments by using the Design of Experiment (DOE) for 2 levels and 5 factors response surface methodology (RSM). The operational conditions used for these factors were optimized using quadratic techniques by reducing the number of experiments. The results revealed that the two types of bacteria had a powerful effect on biodegradable dyes. The regression analysis reveale

... Show More
Preview PDF
Crossref (47)
Crossref
Publication Date
Sun Oct 01 2017
Journal Name
Journal Of Engineering
Optimization of Surface Roughness for Al-alloy in Electro-chemical Machining (ECM) using Taguchi Method
...Show More Authors

Electro-chemical Machining is  significant  process to remove metal with using  anodic dissolution. Electro-chemical machining use to removed metal workpiece from (7025) aluminum alloy using Potassium chloride (KCl) solution .The tool used was made from copper. In this present the optimize processes input parameter use are( current, gap and electrolyte concentration) and surface roughness (Ra) as output .The experiments on electro-chemical machining with use current (30, 50, 70)A, gap (1.00, 1.25, 1.50) mm and electrolyte concentration (100, 200, 300) (g/L).  The method (ANOVA) was used to limited the large influence factors affected on surface roughness and found the current was the large influence f

... Show More
View Publication Preview PDF
Publication Date
Thu Dec 28 2017
Journal Name
Al-khwarizmi Engineering Journal
Tuning PID Controller by Neural Network for Robot Manipulator Trajectory Tracking
...Show More Authors

Ziegler and Nichols proposed the well-known Ziegler-Nichols method to tune the coefficients of PID controller. This tuning method is simple and gives fixed values for the coefficients which make PID controller have weak adaptabilities for the model parameters variation and changing in operating conditions. In order to achieve adaptive controller, the Neural Network (NN) self-tuning PID control is proposed in this paper which combines conventional PID controller and Neural Network learning capabilities. The proportional, integral and derivative (KP, KI, KD) gains are self tuned on-line by the NN output which is obtained due to the error value on the desired output of the system under control. The conventio

... Show More
View Publication Preview PDF
Publication Date
Sat Oct 01 2022
Journal Name
Baghdad Science Journal
Offline Signature Biometric Verification with Length Normalization using Convolution Neural Network
...Show More Authors

Offline handwritten signature is a type of behavioral biometric-based on an image. Its problem is the accuracy of the verification because once an individual signs, he/she seldom signs the same signature. This is referred to as intra-user variability. This research aims to improve the recognition accuracy of the offline signature. The proposed method is presented by using both signature length normalization and histogram orientation gradient (HOG) for the reason of accuracy improving. In terms of verification, a deep-learning technique using a convolution neural network (CNN) is exploited for building the reference model for a future prediction. Experiments are conducted by utilizing 4,000 genuine as well as 2,000 skilled forged signatu

... Show More
View Publication Preview PDF
Scopus (2)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Mon Mar 11 2019
Journal Name
Baghdad Science Journal
Solving Mixed Volterra - Fredholm Integral Equation (MVFIE) by Designing Neural Network
...Show More Authors

       In this paper, we focus on designing feed forward neural network (FFNN) for solving Mixed Volterra – Fredholm Integral Equations (MVFIEs) of second kind in 2–dimensions. in our method, we present a multi – layers model consisting of a hidden layer which has five hidden units (neurons) and one linear output unit. Transfer function (Log – sigmoid) and training algorithm (Levenberg – Marquardt) are used as a sigmoid activation of each unit. A comparison between the results of numerical experiment and the analytic solution of some examples has been carried out in order to justify the efficiency and the accuracy of our method.

         

... Show More
View Publication Preview PDF
Scopus (2)
Scopus Clarivate Crossref
Publication Date
Fri Apr 28 2023
Journal Name
Mathematical Modelling Of Engineering Problems
Design Optimal Neural Network for Solving Unsteady State Confined Aquifer Problem
...Show More Authors

View Publication Preview PDF
Scopus (7)
Crossref (3)
Scopus Crossref
Publication Date
Tue Aug 01 2023
Journal Name
Baghdad Science Journal
An Effective Hybrid Deep Neural Network for Arabic Fake News Detection
...Show More Authors

Recently, the phenomenon of the spread of fake news or misinformation in most fields has taken on a wide resonance in societies. Combating this phenomenon and detecting misleading information manually is rather boring, takes a long time, and impractical. It is therefore necessary to rely on the fields of artificial intelligence to solve this problem. As such, this study aims to use deep learning techniques to detect Arabic fake news based on Arabic dataset called the AraNews dataset. This dataset contains news articles covering multiple fields such as politics, economy, culture, sports and others. A Hybrid Deep Neural Network has been proposed to improve accuracy. This network focuses on the properties of both the Text-Convolution Neural

... Show More
View Publication Preview PDF
Scopus (34)
Crossref (17)
Scopus Crossref
Publication Date
Sat Jan 01 2022
Journal Name
Revista Iberoamericana De PsicologÍa Del Ejercicio Y El Deporte
THE EFFECT OF TRAINING NETWORK TRAINING IN TWO WAYS, HIGH INTERVAL TRAINING AND REPETITION TO DEVELOP SPEED ENDURANCE ADAPT HEART RATE AND ACHIEVE 5000 METERS YOUTH
...Show More Authors

Preview PDF
Scopus (1)
Scopus
Publication Date
Wed Jan 01 2020
Journal Name
Ieee Access
Smart Routing Management Framework Exploiting Dynamic Data Resources of Cross-Layer Design and Machine Learning Approaches for Mobile Cognitive Radio Networks: A Survey
...Show More Authors

View Publication
Scopus (20)
Crossref (20)
Scopus Clarivate Crossref