The drill bit is the most essential tool in drilling operation and optimum bit selection is one of the main challenges in planning and designing new wells. Conventional bit selections are mostly based on the historical performance of similar bits from offset wells. In addition, it is done by different techniques based on offset well logs. However, these methods are time consuming and they are not dependent on actual drilling parameters. The main objective of this study is to optimize bit selection in order to achieve maximum rate of penetration (ROP). In this work, a model that predicts the ROP was developed using artificial neural networks (ANNs) based on 19 input parameters. For the modeling part, a one-dimension mechanical earth model (1D MEM) parameters, drilling fluid properties, and rig- and bit-related parameters, were included as inputs. The optimizing process was then performed to propose the optimum drilling parameters to select the drilling bit that provides the maximum possible ROP. To achieve this, the corresponding mathematical function of the ANNs model was implemented in a procedure using the genetic algorithm (GA) to obtain operating parameters that lead to maximum ROP. The output will propose an optimal bit selection that provides the maximum ROP along with the best drilling parameters. The statistical analysis of the predicted bit types and optimum drilling parameters comparing the actual flied measured values showed a low root mean square error (RMSE), low average absolute percentage error (AAPE), and high correction coefficient (R2). The proposed methodology provides drilling engineers with more choices to determine the best-case scenario for planning and/or drilling future wells. Meanwhile, the newly developed model can be used in optimizing the drilling parameters, maximizing ROP, estimating the drilling time, and eventually reducing the total field development expenses.
The application of the test case prioritization method is a key part of system testing intended to think it through and sort out the issues early in the development stage. Traditional prioritization techniques frequently fail to take into account the complexities of big-scale test suites, growing systems and time constraints, therefore cannot fully fix this problem. The proposed study here will deal with a meta-heuristic hybrid method that focuses on addressing the challenges of the modern time. The strategy utilizes genetic algorithms alongside a black hole as a means to create a smooth tradeoff between exploring numerous possibilities and exploiting the best one. The proposed hybrid algorithm of genetic black hole (HGBH) uses the
... Show MoreThe present study aimed to determine the genetic divergence of seven maize genotypes (Al-Maha, Sumer, Al-Fajr, Baghdad, 5018, 4 × 1 single hybrid, and 4 × 2 single hybrid) under two varied levels of nitrogen fertilization (92 and 276 kg N ha-1). The experiment occurred in 2022 in a randomized complete block design (RCBD) with a split-plot arrangement and three replications at the College of Agricultural Engineering Sciences, University of Baghdad, Iraq. The nitrogen fertilization levels served as main plots, with the maize genotypes allocated as the subplots. The results revealed that genetic variance was higher than the environmental variance for most traits, and the coefficient of phenotypic variation was close to the genetic va
... Show MoreActive learning is a teaching method that involves students actively participating in activities, exercises, and projects within a rich and diverse educational environment. The teacher plays a role in encouraging students to take responsibility for their own education under their scientific and pedagogical supervision and motivates them to achieve ambitious educational goals that focus on developing an integrated personality for today’s students and tomorrow’s leaders. It is important to understand the impact of two proposed strategies based on active learning on the academic performance of first-class intermediate students in computer subjects and their social intelligence. The research sample was intentionally selected, consis
... Show MoreObjective: To assess the role of tumour necrosis factor alpha level and genotyping in susceptibility to leishmaniasis.Method: The case-control study was conducted from March to July 2021 at Baqubah Teaching Hospital, Diyala, Iraq,and comprised patients of cutaneous leishmaniasis in group A and healthy controls in group B. The serum level andsingle nucleotide polymorphisms of tumour necrosis factor-alpha rs41297589 and rs1800629 were compared betweenthe groups. Data was analysed using SPSS 28.Results: Of the 150 subjects, there were 75(50%) in group A; 39(52%) males and 36(48%) females with mean age23.91±13.14 years. The remaining 75(50%) subjects were in group B; 38(50.7%) males and 37(49.3%) females withmean age 22.84±4.35 years.
... Show MoreBackground: Multiple sclerosis (MS) is a chronic neurodegenerative autoimmune disease mediated by autoreactive T cells against myelin-basic proteins. Cytokines are suggested to play a role in the etiopathogenesis of the disease. Among these cytokines is interleukin-2 (IL-2). Aim of the study: To investigate the association between IL2+166 G/T single nucleotide polymorphism (SNP: rs2069763) and MS in Iraqi patients. Serum level of IL-2 was also detected. Anti-rubella IgG antibody was further determined in the sera of patients. Patients and methods: Eighty MS patients (28 males and 52 females; age mean ± SD: 39.2 ± 16.1 years) and 80 healthy control matched patients for age (32.15 ± 16.13 years) and gender (28 males and 52 females) were en
... Show MoreAim of the present study is Identification of specific gene for GPCR using specific primers .and identification of difference in PCR analysis in patients with heart thrombosis and compared with healthy, Sequencing of PCR product regarding GPCR compared for all three subject, Identification the similarity of human GPCR with local strain of yeast fifty healthy control and fifty patients with thrombosis which diagnosed medically with cardiac specific troponin t, troponin 1 levels and electro myocardiogram ECG. The aged for all subjects ranged (39-75) years patients were lying in cardiac care unit at Ibn- al- Nafees teaching hospital and Sheikh Zayed teaching hospital. Genomic DNA of whole blood was extracted from buffy coat and cell cu
... Show MoreAfter Zadeh introduced the concept of z-number scientists in various fields have shown keen interest in applying this concept in various applications. In applications of z-numbers, to compare two z-numbers, a ranking procedure is essential. While a few ranking functions have been already proposed in the literature there is a need to evolve some more good ranking functions. In this paper, a novel ranking function for z-numbers is proposed- "the Momentum Ranking Function"(MRF). Also, game theoretic problems where the payoff matrix elements are z-numbers are considered and the application of the momentum ranking function in such problems is demonstrated.
Graphene oxide (GO) was prepared from graphite (GT) with Hammer method, the GO was reduced with hydrazine hydrate to produce a reduced graphene oxide (RGO). The RGO was reacted with thiocarbohydrazide (TCH) to functionalize the RGO with 4-amino-3-symbol-1h-1, 2, 4-triazol-5 (4H) –thion group and to obtain (RGOT). All the prepared nanomaterial and the product of the functionalization RGOT were characterized with Fourier transformer infrared (FT-IR) spectroscopy, X-ray diffraction (XRD) analysis. RGOT mixed with ultrasonic device at different pH values of phosphate buffer solution (PBS), the mixture used to modifying a screen printed carbon electrodes SPCE and with cyclic voltammetry the sensitivity of selectivity of the new modifying elect
... Show More