Preferred Language
Articles
/
eBfpT48BVTCNdQwCJGu3
(๐โˆ—- Essential Lifting Modules)
...Show More Authors

Publication Date
Sat Jan 01 2022
Journal Name
Int. J. Nonlinear Anal. Appl.
Cofinitely @Dj-supplemented modules
...Show More Authors

Publication Date
Wed Mar 30 2022
Journal Name
Iraqi Journal Of Science
On Annihilator-Extending Modules
...Show More Authors

    Throughout this work we introduce the notion of Annihilator-closed submodules, and we give some basic properties of this concept. We also introduce a generalization for the Extending modules, namely Annihilator-extending modules. Some fundamental properties are presented as well as  we discuss the relation between this concept and some other related concepts.

Scopus (1)
Scopus Crossref
Publication Date
Sun Mar 01 2020
Journal Name
Baghdad Science Journal
On S*-Supplemented Modules
...Show More Authors

The main goal of this paper is to introduce and study a new concept named d*-supplemented which can be considered as a generalization of W- supplemented modules and d-hollow module. Also, we introduce a d*-supplement submodule. Many relationships of d*-supplemented modules are studied. Especially, we give characterizations of d*-supplemented modules and relationship between this kind of modules and other kind modules for example every d-hollow (d-local) module is d*-supplemented and by an example we show that the converse is not true.

View Publication Preview PDF
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Tue Jan 01 2019
Journal Name
Italian Journal Of Pure And Applied Mathematics
Co-small monoform modules
...Show More Authors

he concept of small monoform module was introduced by Hadi and Marhun, where a module U is called small monoform if for each non-zero submodule V of U and for every non-zero homomorphism f ∈ Hom R (V, U), implies that ker f is small submodule of V. In this paper the author dualizes this concept; she calls it co-small monoform module. Many fundamental properties of co-small monoform module are given. Partial characterization of co-small monoform module is established. Also, the author dualizes the concept of small quasi-Dedekind modules which given by Hadi and Ghawi. She show that co-small monoform is contained properly in the class of the dual of small quasi-Dedekind modules. Furthermore, some subclasses of co-small monoform are investiga

... Show More
View Publication Preview PDF
Scopus
Publication Date
Sun May 14 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Annsemimaximal and Coannsemimaximal Modules
...Show More Authors

        Some authors studied modules with annihilator of every nonzero submodule is prime, primary or maximal. In this paper, we introduce and study annsemimaximal and coannsemimaximal modules, where an R-module M is called annsemimaximal (resp. coannsemimaximal) if annRN (resp. ) is semimaximal ideal of R for each nonzero submodule N of M.

View Publication Preview PDF
Publication Date
Sun Sep 04 2011
Journal Name
Baghdad Science Journal
On Primary Multipliction Modules
...Show More Authors

Let R be a commutative ring with identity and M be a unitary R- module. We shall say that M is a primary multiplication module if every primary submodule of M is a multiplication submodule of M. Some of the properties of this concept will be investigated. The main results of this paper are, for modules M and N, we have M N and HomR (M, N) are primary multiplications R-modules under certain assumptions.

View Publication Preview PDF
Crossref
Publication Date
Mon Mar 01 2021
Journal Name
Journal Of Physics: Conference Series
J-semi regular modules
...Show More Authors
Abstract<p>Let <italic>R</italic> be a ring with identity and let <italic>M</italic> be a left R-module. <italic>M</italic> is called J-semiregular module if every cyclic submodule of <italic>M</italic> is J-lying over a projective summand of <italic>M</italic>, The aim of this paper is to introduce properties of J-semiregular module Especially, we give characterizations of J-semiregular module. On the other hand, the notion of J-semi hollow modules is studied as a generalization of semi hollow modules, finally <italic>F</italic>-J-semiregular modules is studied as a generalization of <italic>F</italic>-semiregular modules.</p> ... Show More
View Publication
Scopus (1)
Scopus Crossref
Publication Date
Mon Jul 20 2020
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
รขล โ€ข-s-extending modules
...Show More Authors

     The -s-extending modules will be purpose of this paper, a module M  is -s-extending if each submodule in M is essential in submodule has a supplement that is direct summand. Initially, we give relation between this concept with weakly supplement extending modules and -supplemented modules. In fact, we gives the following implications:

Lifting modules   -supplemented modules   -s-extending modules  weakly supplement extending modules.

It is also we give examples show that, the converse of this result is not true. Moreover, we study when the converse of this result is true.

View Publication Preview PDF
Crossref
Publication Date
Sun Mar 19 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Purely Goldie Extending Modules
...Show More Authors

An -module  is extending if every submodule of   is essential in a direct summand of . Following Clark, an -module  is purely extending if every submodule of   is essential in a pure submodule of . It is clear purely extending is generalization of extending modules. Following Birkenmeier and Tercan, an -module     is Goldie extending if, for each submodule      of , there is a direct summand D of such that . In this paper, we introduce and study class of modules which are proper generalization of both the purely extending modules and -extending modules. We call an -module  is purely Goldie extending if, for each , there is a pure submodule P of such that  . Many c

... Show More
View Publication Preview PDF
Publication Date
Sun Jan 20 2019
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Strongly K-nonsingular Modules
...Show More Authors

       A submodule N of a module M  is said to be s-essential if it has nonzero intersection with any nonzero small submodule in M. In this article, we introduce and study a class of modules in which all its nonzero endomorphisms have non-s-essential kernels, named, strongly -nonsigular. We investigate some properties of strongly -nonsigular modules. Direct summand, direct sums and some connections of such modules are discussed.        

View Publication Preview PDF
Crossref