Wireless sensor applications are susceptible to energy constraints. Most of the energy is consumed in communication between wireless nodes. Clustering and data aggregation are the two widely used strategies for reducing energy usage and increasing the lifetime of wireless sensor networks. In target tracking applications, large amount of redundant data is produced regularly. Hence, deployment of effective data aggregation schemes is vital to eliminate data redundancy. This work aims to conduct a comparative study of various research approaches that employ clustering techniques for efficiently aggregating data in target tracking applications as selection of an appropriate clustering algorithm may reflect positive results in the data aggregation process. In this paper, we have highlighted the gains of the existing schemes for node clustering based data aggregation along with a detailed discussion on their advantages and issues that may degrade the performance. Also, the boundary issues in each type of clustering technique have been analyzed. Simulation results reveal that the efficacy and validity of these clustering-based data aggregation algorithms are limited to specific sensing situations only, while failing to exhibit adaptive behavior in various other environmental conditions.
Volunteerism is an element included in many human cultures. It represents a positive cooperative act between individuals and groups. It expresses the social value systems. As a social phenomenon, it develops in societies according to innumerous circumstances and conditions. This study uses a functional approach that assumes that volunteering performs six functions for volunteers. Namely, we assume that volunteering (1) creates a sense of protection (2) meets significant cultural values (3) improves professional status of volunteers, (4) strengthens their social relationships, (5) helps them achieve a better understanding of life, and finally, (6) enhances their outlook and self-esteem. The central aim of the study is to discuss these fun
... Show MoreThe dangers of (Israel's) integration with Arab countries in the middle east region will threaten the Arab security structure dimension, which the latter makes the Arab regional system vulnerable for distortion due to its nominal and symbolic value which is far from the Arab self and questioning with its effectiveness in comparing with the real capabilities to Arab countries in achieving the common targets. So, how to assess the different problems that began to hit the structure of the Arab regional system? and how to pledge an allegiance after putting forward what is known as the American Deal of the Century for the administration of former US President Donald Trump for making another step toward normalization with (Israel)?. The reveal
... Show MoreHigh-resolution imaging of celestial bodies, especially the sun, is essential for understanding dynamic phenomena and surface details. However, the Earth's atmospheric turbulence distorts the incoming light wavefront, which poses a challenge for accurate solar imaging. Solar granulation, the formation of granules and intergranular lanes on the sun's surface, is important for studying solar activity. This paper investigates the impact of atmospheric turbulence-induced wavefront distortions on solar granule imaging and evaluates, both visually and statistically, the effectiveness of Zonal Adaptive Optics (AO) systems in correcting these distortions. Utilizing cellular automata for granulation modelling and Zonal AO correction methods,
... Show MoreCOVID 19 has spread rapidly around the world due to the lack of a suitable vaccine; therefore the early prediction of those infected with this virus is extremely important attempting to control it by quarantining the infected people and giving them possible medical attention to limit its spread. This work suggests a model for predicting the COVID 19 virus using feature selection techniques. The proposed model consists of three stages which include the preprocessing stage, the features selection stage, and the classification stage. This work uses a data set consists of 8571 records, with forty features for patients from different countries. Two feature selection techniques are used in
Artificial intelligence (AI) is entering many fields of life nowadays. One of these fields is biometric authentication. Palm print recognition is considered a fundamental aspect of biometric identification systems due to the inherent stability, reliability, and uniqueness of palm print features, coupled with their non-invasive nature. In this paper, we develop an approach to identify individuals from palm print image recognition using Orange software in which a hybrid of AI methods: Deep Learning (DL) and traditional Machine Learning (ML) methods are used to enhance the overall performance metrics. The system comprises of three stages: pre-processing, feature extraction, and feature classification or matching. The SqueezeNet deep le
... Show MoreArtificial intelligence (AI) is entering many fields of life nowadays. One of these fields is biometric authentication. Palm print recognition is considered a fundamental aspect of biometric identification systems due to the inherent stability, reliability, and uniqueness of palm print features, coupled with their non-invasive nature. In this paper, we develop an approach to identify individuals from palm print image recognition using Orange software in which a hybrid of AI methods: Deep Learning (DL) and traditional Machine Learning (ML) methods are used to enhance the overall performance metrics. The system comprises of three stages: pre-processing, feature extraction, and feature classification or matching. The SqueezeNet deep le
... Show MoreLandforms on the earth surface are so expensive to map or monitor. Remote Sensing observations from space platforms provide a synoptic view of terrain on images. Satellite multispectral data have an advantage in that the image data in various bands can be subjected to digital enhancement techniques for highlighting contrasts in objects for improving image interpretability. Geomorphological mapping involves the partitioning of the terrain into conceptual spatial entities based upon criteria. This paper illustrates how geomorphometry and mapping approaches can be used to produce geomorphological information related to the land surface, landforms and geomorphic systems. Remote Sensing application at Razzaza–Habbaria area southwest of Razz
... Show More