Texture synthesis using genetic algorithms is one way; proposed in the previous research, to synthesis texture in a fast and easy way. In genetic texture synthesis algorithms ,the chromosome consist of random blocks selected manually by the user .However ,this method of selection is highly dependent on the experience of user .Hence, wrong selection of blocks will greatly affect the synthesized texture result. In this paper a new method is suggested for selecting the blocks automatically without the participation of user .The results show that this method of selection eliminates some blending caused from the previous manual method of selection.
A simple analytical method was used in the present work for the simultaneous quantification of Ciprofloxacin and Isoniazid in pharmaceutical preparations. UV-Visible spectrophotometry has been applied to quantify these compounds in pure and mixture solutions using the first-order derivative method. The method depends on the first derivative spectrophotometry using zero-cross, peak to baseline, peak to peak and peak area measurements. Good linearity was shown in the concentration range of 2 to 24 μg∙mL-1 for Ciprofloxacin and 2 to 22 μg∙mL-1 for Isoniazid in the mixture, and the correlation coefficients were 0.9990 and 0.9989 respectively using peak area mode. The limits of detection (LOD) and limits of quantification (LOQ) wer
... Show MoreThe Artificial Neural Network methodology is a very important & new subjects that build's the models for Analyzing, Data Evaluation, Forecasting & Controlling without depending on an old model or classic statistic method that describe the behavior of statistic phenomenon, the methodology works by simulating the data to reach a robust optimum model that represent the statistic phenomenon & we can use the model in any time & states, we used the Box-Jenkins (ARMAX) approach for comparing, in this paper depends on the received power to build a robust model for forecasting, analyzing & controlling in the sod power, the received power come from
... Show MoreIn some cases, surgeons need to navigate through the computer system for reconfirmation patients’ details and unfortunately surgeons unable to manage both computer system and operation at the same time. In this paper we propose a solution for this problem especially designed for heart surgeon, by introducing voice activation system with 3D visualization of Angiographic images, 2D visualization of Echocardiography processed video and selected patient’s details. In this study, the processing, approximation of the 3D angiography and the visualization of the 2D echocardiography video with voice recognition control are the most challenging work. The work involve with predicting 3D coronary three from 2D angiography image and also image enhan
... Show MoreThyroid disease is a common disease affecting millions worldwide. Early diagnosis and treatment of thyroid disease can help prevent more serious complications and improve long-term health outcomes. However, thyroid disease diagnosis can be challenging due to its variable symptoms and limited diagnostic tests. By processing enormous amounts of data and seeing trends that may not be immediately evident to human doctors, Machine Learning (ML) algorithms may be capable of increasing the accuracy with which thyroid disease is diagnosed. This study seeks to discover the most recent ML-based and data-driven developments and strategies for diagnosing thyroid disease while considering the challenges associated with imbalanced data in thyroid dise
... Show MoreThe hydrological process has a dynamic nature characterised by randomness and complex phenomena. The application of machine learning (ML) models in forecasting river flow has grown rapidly. This is owing to their capacity to simulate the complex phenomena associated with hydrological and environmental processes. Four different ML models were developed for river flow forecasting located in semiarid region, Iraq. The effectiveness of data division influence on the ML models process was investigated. Three data division modeling scenarios were inspected including 70%–30%, 80%–20, and 90%–10%. Several statistical indicators are computed to verify the performance of the models. The results revealed the potential of the hybridized s
... Show MoreThe rapid spread of the COVID-19 coronavirus in 2019 infected many people, primarily affecting the respiratory system. Both COVID-19 and type 2 diabetes have been associated with numerous risks that have become life-threatening. The study studied the link between galectin levels and some clinical characteristics in Iraqis with type 2 diabetes and COVID-19 against those without diabetes. The study included 120 patients and healthy men. Three groups were formed for this study depending on the initial mutant cell line: 80 samples of individuals with type 2 diabetes, aged 40–60 years, with and without COVID-19, were included in each of the first and second groups. The control group consisted of 40 research participants who were matched for ag
... Show MoreThis paper aims at studying the illocutionary speech acts: direct and indirect to show the most dominant ones in a presidential speech delivered by the USA president. The speech is about the most critical health issue in the world, COVID-19 outbreak. A descriptive qualitative study was conducted by observing the first speech delivered by president Trump concerning coronavirus outbreak and surveying the illocutionary acts: directive, declarative, commissive, expressive, and representative. Searle's (1985) classification of illocutionary speech acts is adopted in the analysis.
What are the main types of the illocutionary speech acts performed by Trump in his speech?; Why does
... Show MoreBackground: Coronavirus disease 2019 (COVID-19) is an emerging zoonotic disease caused by the new respiratory virus SARS-CoV2. It has a tropism in the lung tissues where excess target receptors exist. Periostin plays a role in subepithelial fibrosis associated with bronchial asthma. Since the Coronavirus's target is the human respiratory system, Periostin has been recently described as a valuable new biomarker in the diagnosis and evaluation of disease in patients with COVID-19 lung involvement. Objectives: To assess the level of Periostin in the serum of COVID-19 patients and to correlate its role in disease severity and prognosis. Subjects and Methods: Periostin serum levels were measured for 63 patients attending three main COVID
... Show MoreCommunity pharmacists faced more complex challenges in meeting patients’ medication needs during the pandemic than previously reported in the literature. Objectives To explore the perception and abilities of community pharmacists in managing patients’ needs in terms of medication dispensing during the pandemic, and to examine its effect on improving the patients’ situations. Materials and Methods A cross-sectional study design, validated by 30 experts, was conducted using an electronic survey (Google Form) to assess the effect of the dispensing practice of Iraqi community pharmacists on the patient’s clinical outcomes during the pandemic. The survey was distributed on professional pharmacist’s social media platforms from December
... Show More