Today’s academics have a major hurdle in solving combinatorial problems in the actual world. It is nevertheless possible to use optimization techniques to find, design, and solve a genuine optimal solution to a particular problem, despite the limitations of the applied approach. A surge in interest in population-based optimization methodologies has spawned a plethora of new and improved approaches to a wide range of engineering problems. Optimizing test suites is a combinatorial testing challenge that has been demonstrated to be an extremely difficult combinatorial optimization limitation of the research. The authors have proposed an almost infallible method for selecting combinatorial test cases. It uses a hybrid whale–gray wolf optimization algorithm in conjunction with harmony search techniques. Test suite size was significantly reduced using the proposed approach, as shown by the analysis of the results. In order to assess the quality, speed, and scalability of TWGH, experiments were carried out on a set of well-known benchmarks. It was shown in tests that the proposed strategy has a good overall strong reputation test reduction size and could be used to improve performance. Compared with well-known optimization-based strategies, TWGH gives competitive results and supports high combinations (2 ≤ t ≤ 12).
Gumbel distribution was dealt with great care by researchers and statisticians. There are traditional methods to estimate two parameters of Gumbel distribution known as Maximum Likelihood, the Method of Moments and recently the method of re-sampling called (Jackknife). However, these methods suffer from some mathematical difficulties in solving them analytically. Accordingly, there are other non-traditional methods, like the principle of the nearest neighbors, used in computer science especially, artificial intelligence algorithms, including the genetic algorithm, the artificial neural network algorithm, and others that may to be classified as meta-heuristic methods. Moreover, this principle of nearest neighbors has useful statistical featu
... Show MoreThe first successful implementation of Artificial Neural Networks (ANNs) was published a little over a decade ago. It is time to review the progress that has been made in this research area. This paper provides taxonomy for classifying Field Programmable Gate Arrays (FPGAs) implementation of ANNs. Different implementation techniques and design issues are discussed, such as obtaining a suitable activation function and numerical truncation technique trade-off, the improvement of the learning algorithm to reduce the cost of neuron and in result the total cost and the total speed of the complete ANN. Finally, the implementation of a complete very fast circuit for the pattern of English Digit Numbers NN has four layers of 70 nodes (neurons) o
... Show MoreThe first successful implementation of Artificial Neural Networks (ANNs) was published a little over a decade ago. It is time to review the progress that has been made in this research area. This paper provides taxonomy for classifying Field Programmable Gate Arrays (FPGAs) implementation of ANNs. Different implementation techniques and design issues are discussed, such as obtaining a suitable activation function and numerical truncation technique trade-off, the improvement of the learning algorithm to reduce the cost of neuron and in result the total cost and the total speed of the complete ANN. Finally, the implementation of a complete very fast circuit for the pattern of English Digit Numbers NN has four layers of 70 nodes (neurons) o
... Show MoreSkin detection is classification the pixels of the image into two types of pixels skin and non-skin. Whereas, skin color affected by many issues like various races of people, various ages of people gender type. Some previous researchers attempted to solve these issues by applying a threshold that depends on certain ranges of skin colors. Despite, it is fast and simple implementation, it does not give a high detection for distinguishing all colors of the skin of people. In this paper suggests improved ID3 (Iterative Dichotomiser) to enhance the performance of skin detection. Three color spaces have been used a dataset of RGB obtained from machine learning repository, the University of California Irvine (UCI), RGB color space, HSV color sp
... Show MoreGas-lift technique plays an important role in sustaining oil production, especially from a mature field when the reservoirs’ natural energy becomes insufficient. However, optimally allocation of the gas injection rate in a large field through its gas-lift network system towards maximization of oil production rate is a challenging task. The conventional gas-lift optimization problems may become inefficient and incapable of modelling the gas-lift optimization in a large network system with problems associated with multi-objective, multi-constrained, and limited gas injection rate. The key objective of this study is to assess the feasibility of utilizing the Genetic Algorithm (GA) technique to optimize t
Credit risk assessment has become an important topic in financial risk administration. Fuzzy clustering analysis has been applied in credit scoring. Gustafson-Kessel (GK) algorithm has been utilised to cluster creditworthy customers as against non-creditworthy ones. A good clustering analysis implemented by good Initial Centres of clusters should be selected. To overcome this problem of Gustafson-Kessel (GK) algorithm, we proposed a modified version of Kohonen Network (KN) algorithm to select the initial centres. Utilising similar degree between points to get similarity density, and then by means of maximum density points selecting; the modified Kohonen Network method generate clustering initial centres to get more reasonable clustering res
... Show MoreThis paper presents a hybrid genetic algorithm (hGA) for optimizing the maximum likelihood function ln(L(phi(1),theta(1)))of the mixed model ARMA(1,1). The presented hybrid genetic algorithm (hGA) couples two processes: the canonical genetic algorithm (cGA) composed of three main steps: selection, local recombination and mutation, with the local search algorithm represent by steepest descent algorithm (sDA) which is defined by three basic parameters: frequency, probability, and number of local search iterations. The experimental design is based on simulating the cGA, hGA, and sDA algorithms with different values of model parameters, and sample size(n). The study contains comparison among these algorithms depending on MSE value. One can conc
... Show MoreMoment invariants have wide applications in image recognition since they were proposed.
In this paper, the effective computational method (ECM) based on the standard monomial polynomial has been implemented to solve the nonlinear Jeffery-Hamel flow problem. Moreover, novel effective computational methods have been developed and suggested in this study by suitable base functions, namely Chebyshev, Bernstein, Legendre, and Hermite polynomials. The utilization of the base functions converts the nonlinear problem to a nonlinear algebraic system of equations, which is then resolved using the Mathematica®12 program. The development of effective computational methods (D-ECM) has been applied to solve the nonlinear Jeffery-Hamel flow problem, then a comparison between the methods has been shown. Furthermore, the maximum
... Show MoreThe multiple linear regression model is an important regression model that has attracted many researchers in different fields including applied mathematics, business, medicine, and social sciences , Linear regression models involving a large number of independent variables are poorly performing due to large variation and lead to inaccurate conclusions , One of the most important problems in the regression analysis is the multicollinearity Problem, which is considered one of the most important problems that has become known to many researchers , As well as their effects on the multiple linear regression model, In addition to multicollinearity, the problem of outliers in data is one of the difficulties in constructing the reg
... Show More