The reducing of erosion and the solubility of irrigation canals soils which constructed on gypsum soil is important in civil and water resources engineering. The main problem of gypsum soils is the presence of gypsum which represents one of most complex engineering problems, especially when accompanied by the moving of water which represent dynamic load along the canal. There are several solutions to this problem, in this research “Poly urethane” is used to give the gypsum soil sufficient hardness to reduce the solubility and erosion, after compacting the soil in the canal, percentages of Poly urethane was used to making cover to the soil by mixing percent of soil with Poly urethane, and the ratio was as follows: (5 and 10) % and the percent of Poly urethane were as follows: 6%, 10%, and 12%. The collapsibility of the soil was calculated by measuring the height of the soil after the passage of water along the canal. This collapsibility was used as an index to calculate the erosion and the solubility of gypsum within the soil. The results show that the best percentage of poly urethane is (10%), which gave small value in corrosion about (3%) at 28 days.
KE Sharquie, AA Noaimi, SJ Murtada…, Journal of Cosmetics, Dermatological Sciences and Applications, 2016 - Cited by 4
Odontogenic cysts and tumors often form hard and soft structures that resemble odontogenesis. It is well known that amyloid is produced in Pindborg tumors; however, it is still debatable whether it is also formed in other odontogenic tumors and cysts. This study aimed to detect the presence of amyloid in different odontogenic cysts and tumors in correlation to matrix proteins secreted during enamel formation; namely amelogenin and odontogenic ameloblast‐associated protein.
This study included formalin fixed paraffin embedded tissue blocks of 106 different types of odontogenic
The MTX was converted to MTX nanoparticles by the modified method based on changing the pH gradually . For the first time MTX NPs+Meropenem complex were prepared and evaluated as a potential tool to overcome antimicrobial resistance and to improve pharmacokinetics of the drug, the results showed that the antibacterial activity of complex (MTX NPs plus MEM) has increased (from 1( µg/ml) to >0.5( µg/ml) for p1 , from 2( µg/ml) to 1( µg/ml) for p10 and from 8( µg/ml) to 4( µg/ml) for p48).
Physical adsorption by nitrogen gas was studied on seven commercial platinum reforming catalysts (RG-402, RG-412, RG-432, RG-451, RG 422,RG-482, PS-10), four prepared platinum catalysts (0.1%Pt/alumina, 0.2 %Pt/alumina, 0.45 %Pt/alumina and 0.55% Pt/alumina), and -alumina support. Physical adsorption was carried out by using Accelerated Surface Area and Porosimetry (ASAP 2400 device) at 77 K . The results indicate that the surface area in genaral decreases with increasing platinum percentage, high platinum loaded (0.45% and 0.55%) it was found that the percent increasing in surface area was lower than those obtained for low platinum loaded catalysts , and at very higher platinum loading 0.6 %Pt , some reduction in surface area was
... Show MoreBackground: The present study aimed to determine the influence of the different types of mouth wash on discoloration of different orthodontic ceramic, sapphire brackets and adhesives. Materials and methods: The sample composed of 120 ceramic brackets and 120 sapphire brackets, the brackets were divided according to bond material into three groups of 40 brackets include unbounded brackets, chemically cured (no-mix) bonded brackets and Light cured bonded brackets all these groups were further subdivided according to mouth wash type into three groups with 10 brackets each which include; Listerine, cetrimide, chlorhexidine 0.2%, and one control group which immersed in artificial saliva; then Staining measurements were performed with UV-Visibl
... Show MorePhenol oxidation by Fenton's reagent (H2O2 + Fe+2) in aqueous solution has been studied for the purpose of learning
more about the reactions involved and the extent of the oxidation process, under various operating conditions. An initial
phenol concentration of 100 mg/L was used as representative of a phenolic industrial wastewater. Working temperature
of 25C was tested, and initial pH was set at 5.6 . The H2O2 and the Fe+2 doses were varied in the range of
(H2O2/Fe+2/phenol = 3/0.25/1 to 5/0.5/1). Keeping the stirring speed of 200 rpm.
The results exhibit that the highest phenol conversion (100%) was obtained under (H2O/Fe+2/phenol ratio of 5/0.5/1)
at about 180 min. The study has indicated that Fenton's oxidation i