This study includes adding chemicals to gypseous soil to improve its collapse characteristics. The collapse behavior of gypseous soil brought from the north of Iraq (Salah El-Deen governorate) with a gypsum content of 59% was investigated using five types of additions (cement dust, powder sodium meta-silicate, powder activated carbon, sodium silicate solution, and granular activated carbon). The soil was mixed by weight with cement dust (10, 20, and 30%), powder sodium meta-silicate (6%), powder activated carbon (10%), sodium silicate solution (3, 6, and 9%), and granular activated carbon (5, 10, and 15%). The collapse potential is reduced by 86, 71, 43, 37, and 35% when 30% cement dust, 6% powder sodium meta-silicate, 10% powder activated carbon, 6% sodium silicate solution, and 10% granular activated carbon are used, respectively.
A nano manganese dioxide (MnO2) was electrodeposited galvanostatically onto a carbon fiber (CF) surface using the simple method of anodic electrodeposition. The composite electrode was characterized by field emission scanning electron microscopy (FESEM), and X-ray diffraction (XRD). Very few studies investigated the efficiency of this electrode for heavy metals removal, especially chromium. The electrosorption properties of the nano MnO2/CF electrode were examined by removing Cr(VI) ions from aqueous solutions. NaCl concentration, pH, and cell voltage were studied and optimized using the Box-Behnken design (BDD) to investigate their effects and interactions on the electrosorption process. The results showed that the
... Show MoreSoftware-defined networks (SDN) have a centralized control architecture that makes them a tempting target for cyber attackers. One of the major threats is distributed denial of service (DDoS) attacks. It aims to exhaust network resources to make its services unavailable to legitimate users. DDoS attack detection based on machine learning algorithms is considered one of the most used techniques in SDN security. In this paper, four machine learning techniques (Random Forest, K-nearest neighbors, Naive Bayes, and Logistic Regression) have been tested to detect DDoS attacks. Also, a mitigation technique has been used to eliminate the attack effect on SDN. RF and KNN were selected because of their high accuracy results. Three types of ne
... Show MoreIn this paper, the experiments were carried out in laboratory flotation cell treating solid fines. The effect of variables such as collector oil dosage, pine oil dosage and solid content of the feed slurry have been investigated on the flotation characteristics of low rank coal. Attempts have also been made to develop some empirical Eq. to predict the yield and ash content of concentrate with the operating variables, solids concentration, collector oil dosage, and pine oil dosage, to estimate the recovery at any operating conditions. The calculated results obtained from regression equation by correlating the variables with the yield and ash content of concentrate have been compared to study whether calculated values match closely with th
... Show MoreThe current study aims to overcome the conflicts facing the company in its way of staying and continuing to maintain its performance excellent in light of the intense competition, which made it seek to find strong ways and links with its customers through electronic communication using electronic platforms, and this put confidence and safety in The place of suspicion and fear of not fulfilling credibility or violating the privacy, so this research comes to answer about the question: “Can the company achieve an excellent performance by relying on the customer's electronic confidence?”.
The study followed the descriptive and analytical approaches by providing a virtual model and testing the zero hypotheses, which stipulat
... Show MoreThe drones have become the focus of researchers’ attention because they enter into many details of life. The Tri-copter was chosen because it combines the advantages of the quadcopter in stability and manoeuvrability quickly. In this paper, the nonlinear Tri-copter model is entirely derived and applied three controllers; Proportional-Integral-Derivative (PID), Fractional Order PID (FOPID), and Nonlinear PID (NLPID). The tuning process for the controllers’ parameters had been tuned by using the Grey Wolf Optimization (GWO) algorithm. Then the results obtained had been compared. Where the improvement rate for the Tri-copter model of the nonlinear controller (NLPID) if compared with
The aim of this investigation was to study the impact of various reaction parameters on wastewater taken from Al-Wathba water treatment plant on Tigris River in south of Baghdad, Iraq with sodium hypochlorite solution. The parameters studied were sodium hypochlorite dose, contact time, initial fecal coliform bacteria concentration, temperature, and pH. In a batch reactor, different concentrations of sodium hypochlorite solution were used to disinfect 1L of water. The amount of hypochlorite ions in disinfected water was measured using an Iodimetry test for different reaction times, whereas the Most Probable Number (MPN) test was used to determine the concentration of coliform bacteria. Total Plate Count (TPC) was utilized in this study to
... Show MoreThe development of a meaningful dissolution procedure for drug products with limited water solubility has been a challenge to both the pharmaceutical industry and the agencies that regulate them. Natural surfactants aid in the dissolution and subsequent absorption of drugs with limited aqueous solubility. In vitro, various techniques have been used to achieve adequate dissolution of the sparingly water – soluble or water insoluble drug products such as the use of mechanical methods (i.e., increased agitation and the disintegration method) or hydro alcoholic medium or large volumes of medium. The necessity of assuring the quality of drugs , especially those with low aqueous solubility and in vivo absorption , has led to the development and
... Show More<span>Dust is a common cause of health risks and also a cause of climate change, one of the most threatening problems to humans. In the recent decade, climate change in Iraq, typified by increased droughts and deserts, has generated numerous environmental issues. This study forecasts dust in five central Iraqi districts using machine learning and five regression algorithm supervised learning system framework. It was assessed using an Iraqi meteorological organization and seismology (IMOS) dataset. Simulation results show that the gradient boosting regressor (GBR) has a mean square error of 8.345 and a total accuracy ratio of 91.65%. Moreover, the results show that the decision tree (DT), where the mean square error is 8.965, c
... Show More