1267 Objectives Aim to evaluate 198Au nanoparticles (AuNP) biodistribution and uptake in a human prostate model for treatment. Many phytochemicals are known to have anti-tumor properties but have short half-lives in vivo. We hypothesized that using these phytochemicals to formulate and coat AuNP would inhibit enzyme cleavage and enhance their anti-tumor properties. Initial evaluations were performed in SCID mice bearing PC3 tumors. Methods : 198AuNP were formulated with the following gum Arabic, epigalocatechin gallate (EGCg) pomegranate extract and mangiferin extract. The resultant nanoparticles were evaluated in normal mice and in human prostate bearing SCID mice. The tumor bearing mice were injected intratumorally with 3-5 uCi of 198AuNP and euthanized at the following time points 30 min, 1,2,4 and 24 hr. Various organs were removed and counted along with standards to calculate the percent injected dose per organ and per gram. Results All nanoparticles showed high retention in the tumor with the 198AuNP formulated from mangiferin showing the highest retention 80.98 ± 13.39 %ID at 30 min and remaining steady out to 24 hr 79.82 ±10.55 % ID. The tumor uptake and retention was in the following order mangiferin> pomegranate (61.5 ± 26.4 %ID > EGCg 36.2 ± 12.5 %ID > gum Arabic 17.75.± 23.36 %ID. Conclusions : 198AuNP were stably formed using gum Arabic, EGCg, pomegranate extract and mangiferin. The 198AuNp were shown to be retained in high yields in prostate tumors demonstrating their potential for ablation of prostate cancer. Research Support This research supported by NSEI, MURR, Green Technology institute /MU. Al-Yasiri supported by the University of Baghdad and NSEI.
Its well known that understanding human facial expressions is a key component in understanding emotions and finds broad applications in the field of human-computer interaction (HCI), has been a long-standing issue. In this paper, we shed light on the utilisation of a deep convolutional neural network (DCNN) for facial emotion recognition from videos using the TensorFlow machine-learning library from Google. This work was applied to ten emotions from the Amsterdam Dynamic Facial Expression Set-Bath Intensity Variations (ADFES-BIV) dataset and tested using two datasets.
Most intrusion detection systems are signature based that work similar to anti-virus but they are unable to detect the zero-day attacks. The importance of the anomaly based IDS has raised because of its ability to deal with the unknown attacks. However smart attacks are appeared to compromise the detection ability of the anomaly based IDS. By considering these weak points the proposed
system is developed to overcome them. The proposed system is a development to the well-known payload anomaly detector (PAYL). By
combining two stages with the PAYL detector, it gives good detection ability and acceptable ratio of false positive. The proposed system improve the models recognition ability in the PAYL detector, for a filtered unencrypt
The rotor dynamics generally deals with vibration of rotating structures. For designing rotors of a high speeds, basically its important to take into account the rotor dynamics characteristics. The modeling features for rotor and bearings support flexibility are described in this paper, by taking these characteristics of rotor dynamics features into standard Finite Element Approach (FEA) model. Transient and harmonic analysis procedures have been found by ANSYS, the idea has been presented to deal with critical speed calculation. This papers shows how elements BEAM188 and COMBI214 are used to represent the shaft and bearings, the dynamic stiffness and damping coefficients of journal bearings as a matrices have been found
... Show MoreApplications of remote sensing are important in improving potato production through the broader adoption of precision agriculture. This technology could be useful in decreasing the potential contamination of soil and water due to the over-fertilization of agriculture crops. The objective of this study was to assess the utility of active sensors (Crop Circle™, Holland Scientific, Inc., Lincoln, NE, USA and GreenSeeker™, Trimble Navigation Limited, Sunnyvale, CA, USA) and passive sensors (multispectral imaging with Unmanned Arial Vehicles (UAVs)) to predict total potato yield and phosphorus (P) uptake. The experimental design was a randomized complete block with four replications and six P treatments, ranging from 0 to 280 kg P ha−1, as
... Show MoreDecision making is vital and important activity in field operations research ,engineering ,administration science and economic science with any industrial or service company or organization because the core of management process as well as improve him performance . The research includes decision making process when the objective function is fraction function and solve models fraction programming by using some fraction programming methods and using goal programming method aid programming ( win QSB )and the results explain the effect use the goal programming method in decision making process when the objective function is
fraction .
The Assignment model is a mathematical model that aims to express a real problem facing factories and companies which is characterized by the guarantee of its activity in order to make the appropriate decision to get the best allocation of machines or jobs or workers on machines in order to increase efficiency or profits to the highest possible level or reduce costs or time To the extent possible, and in this research has been using the method of labeling to solve the problem of the fuzzy assignment of real data has been approved by the tire factory Diwaniya, where the data included two factors are the factors of efficiency and cost, and was solved manually by a number of iterations until reaching the optimization solution,
... Show MoreIn this work, satellite images classification for Al Chabaish marshes and the area surrounding district in (Dhi Qar) province for years 1990,2000 and 2015 using two software programming (MATLAB 7.11 and ERDAS imagine 2014) is presented. Proposed supervised classification method (Modified Vector Quantization) using MATLAB software and supervised classification method (Maximum likelihood Classifier) using ERDAS imagine have been used, in order to get most accurate results and compare these methods. The changes that taken place in year 2000 comparing with 1990 and in year 2015 comparing with 2000 are calculated. The results from classification indicated that water and vegetation are decreased, while barren land, alluvial soil and shallow water
... Show MoreA number of compression schemes were put forward to achieve high compression factors with high image quality at a low computational time. In this paper, a combined transform coding scheme is proposed which is based on discrete wavelet (DWT) and discrete cosine (DCT) transforms with an added new enhancement method, which is the sliding run length encoding (SRLE) technique, to further improve compression. The advantages of the wavelet and the discrete cosine transforms were utilized to encode the image. This first step involves transforming the color components of the image from RGB to YUV planes to acquire the advantage of the existing spectral correlation and consequently gaining more compression. DWT is then applied to the Y, U and V col
... Show More