Artificial intelligence (AI) is entering many fields of life nowadays. One of these fields is biometric authentication. Palm print recognition is considered a fundamental aspect of biometric identification systems due to the inherent stability, reliability, and uniqueness of palm print features, coupled with their non-invasive nature. In this paper, we develop an approach to identify individuals from palm print image recognition using Orange software in which a hybrid of AI methods: Deep Learning (DL) and traditional Machine Learning (ML) methods are used to enhance the overall performance metrics. The system comprises of three stages: pre-processing, feature extraction, and feature classification or matching. The SqueezeNet deep learning model was utilized to resize images and feature extraction. Finally, different ML classifiers have been tested for recognition based on the extracted features. The effectiveness of each classifier was assessed using various performance metrics. The results show that the proposed system works well, and all the methods achieved good results; however, the best results obtained were for the Support Vector Machine (SVM) with a linear kernel.
The aim of this study is for testing the applicability of Ramamoorthy and Murphy method for identification of predominant pore fluid type, in Middle Eastern carbonate reservoir, by analyzing the dynamic elastic properties derived from the sonic log. and involving the results of Souder, for testing the same method in chalk reservoir in the North Sea region. Mishrif formation in Garraf oilfield in southern Iraq was handled in this study, utilizing a slightly-deviated well data, these data include open-hole full-set logs, where, the sonic log composed of shear and compression modes, and geologic description to check the results. The Geolog software is used to make the conventional interpretation of porosity, lithology, and saturation. Also,
... Show MoreThe map of permeability distribution in the reservoirs is considered one of the most essential steps of the geologic model building due to its governing the fluid flow through the reservoir which makes it the most influential parameter on the history matching than other parameters. For that, it is the most petrophysical properties that are tuned during the history matching. Unfortunately, the prediction of the relationship between static petrophysics (porosity) and dynamic petrophysics (permeability) from conventional wells logs has a sophisticated problem to solve by conventional statistical methods for heterogeneous formations. For that, this paper examines the ability and performance of the artificial intelligence method in perme
... Show MoreAudio-visual detection and recognition system is thought to become the most promising methods for many applications includes surveillance, speech recognition, eavesdropping devices, intelligence operations, etc. In the recent field of human recognition, the majority of the research be- coming performed presently is focused on the reidentification of various body images taken by several cameras or its focuses on recognized audio-only. However, in some cases these traditional methods can- not be useful when used alone such as in indoor surveillance systems, that are installed close to the ceiling and capture images right from above in a downwards direction and in some cases people don't look straight the cameras or it cannot be added in some
... Show MoreArtificial Neural networks (ANN) are powerful and effective tools in time-series applications. The first aim of this paper is to diagnose better and more efficient ANN models (Back Propagation, Radial Basis Function Neural networks (RBF), and Recurrent neural networks) in solving the linear and nonlinear time-series behavior. The second aim is dealing with finding accurate estimators as the convergence sometimes is stack in the local minima. It is one of the problems that can bias the test of the robustness of the ANN in time series forecasting. To determine the best or the optimal ANN models, forecast Skill (SS) employed to measure the efficiency of the performance of ANN models. The mean square error and
... Show MoreAbstract :
In view of the fact that high blood pressure is one of the serious human diseases that a person can get without having to feel them, which is caused by many reasons therefore it became necessary to do research in this subject and to express these many factors by specific causes through studying it using (factor analysis).
So the researcher got to the five factors that explains only 71% of the total variation in this phenomenon is the subject of the research, where ((overweight)) and ((alcohol in abundance)) and ((smoking)) and ((lack of exercise)) are the reasons that influential the most in the incidence of this disease.
Image compression is a serious issue in computer storage and transmission, that simply makes efficient use of redundancy embedded within an image itself; in addition, it may exploit human vision or perception limitations to reduce the imperceivable information Polynomial coding is a modern image compression technique based on modelling concept to remove the spatial redundancy embedded within the image effectively that composed of two parts, the mathematical model and the residual. In this paper, two stages proposed technqies adopted, that starts by utilizing the lossy predictor model along with multiresolution base and thresholding techniques corresponding to first stage. Latter by incorporating the near lossless com
... Show MoreIn the image processing’s field and computer vision it’s important to represent the image by its information. Image information comes from the image’s features that extracted from it using feature detection/extraction techniques and features description. Features in computer vision define informative data. For human eye its perfect to extract information from raw image, but computer cannot recognize image information. This is why various feature extraction techniques have been presented and progressed rapidly. This paper presents a general overview of the feature extraction categories for image.
Kidney tumors are of different types having different characteristics and also remain challenging in the field of biomedicine. It becomes very important to detect the tumor and classify it at the early stage so that appropriate treatment can be planned. Accurate estimation of kidney tumor volume is essential for clinical diagnoses and therapeutic decisions related to renal diseases. The main objective of this research is to use the Computer-Aided Diagnosis (CAD) algorithms to help the early detection of kidney tumors that addresses the challenges of accurate kidney tumor volume estimation caused by extensive variations in kidney shape, size and orientation across subjects.
In this paper, have tried to implement an automated segmentati
Rock type identification is very important task in Reservoir characterization in order to constrict robust reservoir models. There are several approaches have been introduced to define the rock type in reservoirs and each approach should relate the geological and petrophysical properties, such that each rock type is proportional to a unique hydraulic flow unit. A hydraulic flow unit is a reservoir zone that is laterally and vertically has similar flow and bedding characteristics. According to effect of rock type in reservoir performance, many empirical and statistical approaches introduced. In this paper Cluster Analysis technique is used to identify the rock groups in tertiary reservoir for Khabaz oil field by analyses variation o
... Show MoreReconstruction project management in the cities of Mosul, Anbar, and Tikrit, in Iraq still faces major obstacles that impede the comprehensive performance of these projects. It is thus necessary to improve the arising challenge estimation in the implementation of reconstruction projects and evaluate their components: time, cost, quality, and scope. This study used the Analytical Hierarchy Process (AHP) to prioritize major and minor criteria in the influential causes of challenges and formulate a mathematical model to help decision-makers estimate them. Using the Super Decisions software, the final results indicated that changes in scope reached 40.8%, which is the greatest difficulty, followed by changes in cost at 27.6%, changes in
... Show More