Artificial intelligence (AI) is entering many fields of life nowadays. One of these fields is biometric authentication. Palm print recognition is considered a fundamental aspect of biometric identification systems due to the inherent stability, reliability, and uniqueness of palm print features, coupled with their non-invasive nature. In this paper, we develop an approach to identify individuals from palm print image recognition using Orange software in which a hybrid of AI methods: Deep Learning (DL) and traditional Machine Learning (ML) methods are used to enhance the overall performance metrics. The system comprises of three stages: pre-processing, feature extraction, and feature classification or matching. The SqueezeNet deep learning model was utilized to resize images and feature extraction. Finally, different ML classifiers have been tested for recognition based on the extracted features. The effectiveness of each classifier was assessed using various performance metrics. The results show that the proposed system works well, and all the methods achieved good results; however, the best results obtained were for the Support Vector Machine (SVM) with a linear kernel.
Background:The demand for esthetic orthodontic appliances is increasing so that the esthetic orthodontic archwires were introduced. This in vitro study was designed to evaluate the surface roughness offiber-reinforced polymer composite (FRPC) archwires compared to coated nickel-titanium (NiTi) archwires immersed in artificial saliva. Materials and Methods:Three types of esthetic orthodontic archwires were used: FRPC (Dentaurum), Teflon coated NiTi (Dentaurum) and epoxy coated NiTi (Orthotechnology). They were round (0.018 inch) in cross section and cut into pieces of 15 mm in length.Forty pieces from each type were divided into four groups; one group was left at a dry condition and the other three groups were immersed in artificial saliva (
... Show MoreAbstract
This paper presents an intelligent model reference adaptive control (MRAC) utilizing a self-recurrent wavelet neural network (SRWNN) to control nonlinear systems. The proposed SRWNN is an improved version of a previously reported wavelet neural network (WNN). In particular, this improvement was achieved by adopting two modifications to the original WNN structure. These modifications include, firstly, the utilization of a specific initialization phase to improve the convergence to the optimal weight values, and secondly, the inclusion of self-feedback weights to the wavelons of the wavelet layer. Furthermore, an on-line training procedure was proposed to enhance the control per
... Show MoreThe increase globally fossil fuel consumption as it represents the main source of energy around the world, and the sources of heavy oil more than light, different techniques were used to reduce the viscosity and increase mobility of heavy crude oil. this study focusing on the experimental tests and modeling with Back Feed Forward Artificial Neural Network (BFF-ANN) of the dilution technique to reduce a heavy oil viscosity that was collected from the south- Iraq oil fields using organic solvents, organic diluents with different weight percentage (5, 10 and 20 wt.% ) of (n-heptane, toluene, and a mixture of different ratio
... Show MoreThe drill bit is the most essential tool in drilling operation and optimum bit selection is one of the main challenges in planning and designing new wells. Conventional bit selections are mostly based on the historical performance of similar bits from offset wells. In addition, it is done by different techniques based on offset well logs. However, these methods are time consuming and they are not dependent on actual drilling parameters. The main objective of this study is to optimize bit selection in order to achieve maximum rate of penetration (ROP). In this work, a model that predicts the ROP was developed using artificial neural networks (ANNs) based on 19 input parameters. For the
This study is targeting the new developed materials and techniques and how they were affected by the scientific and technological developments that contributed to revelated new and varied developed materials and techniques. And from the artist’s formulation by using the materials and techniques and through its embodiment and sensor the values, artistic and aesthetic standards by breaking from the familiar in aesthetic contemporary way.
The studies on questioning what’s the role of The New Developed Materials and Techniques in exposing the aesthetic of the art work?
This study is to show the aesthetic of the art work through the new developed materials and techniques. Which was based on descriptive analyzing method and hig
... Show More<span>Distributed denial-of-service (DDoS) attack is bluster to network security that purpose at exhausted the networks with malicious traffic. Although several techniques have been designed for DDoS attack detection, intrusion detection system (IDS) It has a great role in protecting the network system and has the ability to collect and analyze data from various network sources to discover any unauthorized access. The goal of IDS is to detect malicious traffic and defend the system against any fraudulent activity or illegal traffic. Therefore, IDS monitors outgoing and incoming network traffic. This paper contains a based intrusion detection system for DDoS attack, and has the ability to detect the attack intelligently, dynami
... Show MoreSummary Kidney transplantation is widely performed nowadays as an optimal treatment of end stage kidney diseases. Complications such as stenosis in graft renal arteries anastomosis may occur. Different suturing techniques are available for renal artery anastomosis. We aimed to compare the incidence of renal artery stenosis of the transplanted kidney when two suture techniques (continuous or interrupted) used for renal artery anastomosis. Therefore, a retrospectively comparative study was conducted on 44 patients managed with kidney transplantation during the years 2009-2011. Patients assigned into two groups; first group included 20 patients namely, continuous suture group, and the second group included 24 patients in whom the allograft art
... Show MoreThe phenomena of Dust storm take place in barren and dry regions all over the world. It may cause by intense ground winds which excite the dust and sand from soft, arid land surfaces resulting it to rise up in the air. These phenomena may cause harmful influences upon health, climate, infrastructure, and transportation. GIS and remote sensing have played a key role in studying dust detection. This study was conducted in Iraq with the objective of validating dust detection. These techniques have been used to derive dust indices using Normalized Difference Dust Index (NDDI) and Middle East Dust Index (MEDI), which are based on images from MODIS and in-situ observation based on hourly wi