Four Co(II), (C1); Ni(II), (C2); Cu(II), (C3) and Zn(II), (C4) chelates have been synthesized with 1-(4-((2-amino- 5‑methoxy)diazenyl)phenyl)ethanone ligand (L). The produced compounds have been identified by using spectral studies, elemental analysis (C.H.N.O), conductivity and magnetic properties. The produced metal chelates were studied using molar ratio as well as sequences contrast types. Rate of concentration (1 ×10 4 - 3 ×10 4 Mol/L) sequence Beer’s law. Compound solutions have been noticed height molar absorptivity. The free of ligand and metal chelates had been applied as disperse dyes on cotton fabrics. Furthermore, the antibacterial activity of the produced compounds against various bacteria had been investigated. For the gained datum, a tetrahedral geometrical structure has been suggested for each primed complex. Molecular docking investigation was carried out to ascertain the inhibitory action of the studied compounds against 1HNJ protein, the target enzyme for the antimicrobial agents. The findings showed that, when compared to other compounds, (C1) has the highest binding affinity. Therefore, these molecules might make good candidates for antimicrobials. The quantum chemical parameters are calculated, and the molecular structure complexes were theoretically optimized.
3-(4-hydroxyphenyl)-2-(3-(4-nitrobenzoyl) thioureido) propanoic acid (HNP) a new ligand was synthesized by reaction of Tyrosine with (4-Nitrobenzoyl isothiocyanate) by using acetone as a solvent. The prepared ligand (HNP) has been characterized by elemental analysis (CHNS), infrared (FT-IR), electronic spectral (Ultraviolet visible) and(1H,13C-Nuclear Magnetic Resonance) spectra. Some Divalent metal ion complexes of (HNP) were prepared and spectroscopic studies by Fourier transform infrared (FTIR), electronic spectral(UV-Vis), molar conductance, magnetic susceptibility and atomic absorption. The results measured showed the formula of six prepared complexes were [M (HNP)2] (M+2 = Manganese, Cobalt, Nickel, Znic, Cadmium and Mercury),from the
... Show MoreThis work includes synthesis of new heterocyclic derivatives of 2-mercpto-3-phenyl-4(3H)-quinazolinone bearing 1, 2, 4-triazole and acetylenic amines moieties by using two ways. The first way includes reaction of 2-mercpto-3-phenyl-4(3H)-quinazolinone (1) with ethyl-2-bromopropanoate in methanol as solvent to gives ester derivative (2). Then, compound (2) was converted to (hydrazide, simecarbazid, phenylsimecarbazide and thiosimecarbazide) derivatives through its reactions with (hydrazine hydrate, simecarbazid, phenylsimecarbazide and thiosimecarbazide) respectively to give compounds (3-6). Finally, the cyclization of compounds (4-6) in alkaline media (4N-NaOH) gave the corresponding substituted triazole derivatives (7-9) respectively. W
... Show MoreThis study describes the preparation of tetradentate Schiff base derived from the condensation of 2-Hydroxy naphthaldehyde with 2-amine benzhydrazide and the synthesis of new complexes series with a good yield.The prepared ligand was characterized using a microanalysis technique, UV-visible, FT-IR, nuclear magnetic resonance 1H-NMR, mass spectrometry, thermal gravimetric analysis TGA, and the addition of conductivity measurement and magnetic moment of complexes. The invitro antimicrobial activity of the prepared compounds was tested against Gram-negative Klebsiella pneumonia, Gram-positive Staphylococcus aureu, and Candida albicans by the agar well diffusion method. The spectroscopy and measurement studies showed that the li
... Show MoreThis work involves the preparation of the ligand [KL] :- ÂÂÂÂÂÂ
K[4-(N-(5-methylisoxazol-3-yl) sulfamyl) phenylcarbamodithioate] from the reaction of sulfamethoxazole with Carbon disulfide in the presence of potassium hydroxide under reflux (4 hours) using methanol as asolvent. The prepared ligand was characterized using FT-IR, UV-Vis, 1H,13C–NMR spectroscopy, molar conductivity and melting point, Complexes for the above ligand [KL] with some bivalent transition and non-transition metals (Mn +2, Co+2 , Ni+2 ,
... Show MoreGold nanoparticles (Au NPs) have been synthesized via reduction of sodium tetrachloroaurate dihydrate (NaAuCl4.2H2O) with 2-(2-methyl-5-amino -1H-imidazol-1-yl) ethanol (2-MAE) in presence and absence of ascorbic acid as reducing and stabilizing agents. The resulting Au NPs were characterized by UV–Vis spectroscopy, scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray diffraction (XRD), FT-IR spectroscopy. The absorption spectra of gold nanoparticles solutions in the uv-visible and near IR regions were studied at different amine concentrations and pH media.
Gold nanoparticles (Au NPs) have been synthesized via reduction of sodium tetrachloroaurate dihydrate (NaAuCl4.2H2O) with 2-(2-methyl-5-amino -1H-imidazol-1-yl) ethanol (2-MAE) in presence and absence of ascorbic acid as reducing and stabilizing agents. The resulting Au NPs were characterized by UV–Vis spectroscopy, scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray diffraction (XRD), FT-IR spectroscopy. The absorption spectra of gold nanoparticles solutions in the uv-visible and near IR regions were studied at different amine concentrations and pH media.
2-Amino-5-aryl- 1,3-thiazole-4-carboxylic acid (A1-A3) were synthesized from the reaction of various aromatic aldehyde with dichloro acetic acid and thiourea. The synthesis of 2-[[(Saminosulfinim-idoyl)(aryl)methyl](benzoyl)amino]-5-aryl-1,3-thiazole-4-carboxylic acid (A22-A30) was perfomed starting from (A1-A3) by two steps using Schiff's base (A4-A12) prepared from the reactant compounds (A1-A3) with different aromatic aldehyde. Finally two types of imide derivatives were obtained from reactant compounds (A1-A3) with malic anhydride (A31-A33) and phthalic anhydride (A34-A36) in the presence of glacial acetic acid. All proposed structures were supported by FT-IR and UV-Visible spectroscopic data.
Mn(II), Co(II), Ni(II), Cu(II), and Cr(III) metal complexes with the ligand (L) [3-(2nitro benzylidene) amino-2-thioxoimidazolidin-4-one] have been prepared and characterized in their solid state using the elemental micro analysis (C.H.N.S), flame atomic absorption, UV-Vis spectroscopy, FT-IR, magnetic susceptibility measurements, and electrical molar conductivity. The ratio of metal to ligand [M:L] was got for all complexes in the ethanol by using the molar ratio method, which produced comparable results with those results obtained for the solid complexes. From the data of all techniques, octahedral geometry was proposed for Cr(III), Mn(II), and Co(II) complexes, while tetrahedral structure was proposed for Ni(II), Cu(II) complexes.