Preferred Language
Articles
/
dYbFf4YBIXToZYALH4xz
مقارنة الانحدار الشرائحي المعكوس مع المركبات الرئيسة في اختزال البيانات ذات الابعاد العالية بأستعمال المحاكاة
...Show More Authors

 يدرس هذا البحث طرائق اختزال الابعاد التي تعمل على تجاوز مشكلة البعدية عندما تفشل الطرائق التقليدية في ايجاد تقدير جيد للمعلمات، لذلك يتوجب التعامل مع هذه المشكلة بشكل مباشر. ومن اجل ذلك، يجب التخلص من هذه المشكلة لذا تم استعمال اسلوبين لحل مشكلة البيانات ذات الابعاد العالية الاسلوب الاول طريقة الانحدار الشرائحي المعكوس SIR ) ) والتي تعتبر طريقة غير كلاسيكية  وكذلك طريقة ( WSIR ) المقترحة والاسلوب الثاني طريقة المركبات الرئيسة ( PCA ) وهي الطريقة العامة المستخدمة في اختزال الابعاد ,  ان عمل طريقة انحدار الشرائحي المعكوس SIR ) ) و طريقة المركبات الرئيسة (PCA) يقوم على عمل توليفات خطية مختزلة من مجموعة جزئية من المتغيرات التوضيحية الأصلية والتي قد تعاني من مشكلة عدم التجانس ومن مشكلة التعدد الخطي بين معظم المتغيرات التوضيحية , وستقوم هذه التوليفات الجديدة المتمثلة بالمركبات الخطية الناتجة من الطريقتين بإختزال أكثر عدد من المتغيرات التوضيحية للوصول الى بُعد جديد واحد او اكثر  يسمى بالبعد الفعّال . وسيتم استعمال معيار جذر متوسط مربعات الخطأ للمقارنة بين الاسلوبين لبيان  افضلية الطرائق , وقد تم اجراء دراسة محاكاة للمقارنة بين الطرائق المستعملة  وقد بينت نتائج المحاكاة ان طريقة weight standard Sir  المقترحة هي الافضل .

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sat Dec 31 2022
Journal Name
Journal Of Economics And Administrative Sciences
Using Some Estimation Methods for Mixed-Random Panel Data Regression Models with Serially Correlated Errors with Application
...Show More Authors

This research includes the study of dual data models with mixed random parameters, which contain two types of parameters, the first is random and the other is fixed. For the random parameter, it is obtained as a result of differences in the marginal tendencies of the cross sections, and for the fixed parameter, it is obtained as a result of differences in fixed limits, and random errors for each section. Accidental bearing the characteristic of heterogeneity of variance in addition to the presence of serial correlation of the first degree, and the main objective in this research is the use of efficient methods commensurate with the paired data in the case of small samples, and to achieve this goal, the feasible general least squa

... Show More
View Publication Preview PDF
Publication Date
Fri Dec 01 2017
Journal Name
Journal Of Economics And Administrative Sciences
Multi – Linear in Multiple Nonparametric Regression , Detection and Treatment Using Simulation
...Show More Authors

             It is the regression analysis is the foundation stone of knowledge of statistics , which mostly depends on the ordinary least square method , but as is well known that the way the above mentioned her several conditions to operate accurately and the results can be unreliable , add to that the lack of certain conditions make it impossible to complete the work and analysis method and among those conditions are the multi-co linearity problem , and we are in the process of detected that problem between the independent variables using farrar –glauber test , in addition to the requirement linearity data and the lack of the condition last has been resorting to the

... Show More
View Publication Preview PDF
Crossref
Publication Date
Fri Mar 01 2013
Journal Name
Journal Of Economics And Administrative Sciences
Employment of exploratory factor analysis to extract factors Organizational Loyalty and job satisfaction Case Study in the College of Technology Management – Baghdad
...Show More Authors

According to the measuring the relationship between organizational loyalty and job satisfaction among staff members at one college in the higher education ministry in Iraq by using exploratory factor analysis methods to extraction the components which have the major effects on the variables related to organizational loyalty and job satisfaction .

The research contains four basic topics، the first section related to methodology and regarding the conceptual framework it is discussed in the second section، and the third section concentrated at the presentation and the analysis Scientific results and practical results are section presented in the fourth.

 

View Publication Preview PDF
Crossref
Publication Date
Sun Dec 01 2024
Journal Name
Chilean Journal Of Statistics
A method of multi-dimensional variable selection for additive partial linear models.
...Show More Authors

In high-dimensional semiparametric regression, balancing accuracy and interpretability often requires combining dimension reduction with variable selection. This study intro- duces two novel methods for dimension reduction in additive partial linear models: (i) minimum average variance estimation (MAVE) combined with the adaptive least abso- lute shrinkage and selection operator (MAVE-ALASSO) and (ii) MAVE with smoothly clipped absolute deviation (MAVE-SCAD). These methods leverage the flexibility of MAVE for sufficient dimension reduction while incorporating adaptive penalties to en- sure sparse and interpretable models. The performance of both methods is evaluated through simulations using the mean squared error and variable selection cri

... Show More
View Publication Preview PDF
Scopus Clarivate Crossref
Publication Date
Mon Jun 05 2023
Journal Name
Journal Of Economics And Administrative Sciences
Fuzzy Bridge Regression Model Estimating via Simulation
...Show More Authors

      The main problem when dealing with fuzzy data variables is that it cannot be formed by a model that represents the data through the method of Fuzzy Least Squares Estimator (FLSE) which gives false estimates of the invalidity of the method in the case of the existence of the problem of multicollinearity. To overcome this problem, the Fuzzy Bridge Regression Estimator (FBRE) Method was relied upon to estimate a fuzzy linear regression model by triangular fuzzy numbers. Moreover, the detection of the problem of multicollinearity in the fuzzy data can be done by using Variance Inflation Factor when the inputs variable of the model crisp, output variable, and parameters are fuzzed. The results were compared usin

... Show More
View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Fri Jan 01 2021
Journal Name
International Journal Of Agricultural And Statistical Sciences
NONPARAMETRIC ESTIMATION IN DOUBLY GEOMETRIC STOCHASTIC PROCESSES
...Show More Authors

A stochastic process {Xk, k = 1, 2, ...} is a doubly geometric stochastic process if there exists the ratio (a > 0) and the positive function (h(k) > 0), so that {α 1 h-k }; k ak X k = 1, 2, ... is a generalization of a geometric stochastic process. This process is stochastically monotone and can be used to model a point process with multiple trends. In this paper, we use nonparametric methods to investigate statistical inference for doubly geometric stochastic processes. A graphical technique for determining whether a process is in agreement with a doubly geometric stochastic process is proposed. Further, we can estimate the parameters a, b, μ and σ2 of the doubly geometric stochastic process by using the least squares estimate for Xk a

... Show More
Scopus (1)
Scopus
Publication Date
Mon Oct 22 2018
Journal Name
Journal Of Economics And Administrative Sciences
Using simulation to compare between parametric and nonparametric transfer function model
...Show More Authors

In this paper, The transfer function model in the time series was estimated using different methods, including parametric Represented by the method of the Conditional Likelihood Function, as well as the use of abilities nonparametric are in two methods  local linear regression and cubic smoothing spline method, This research aims to compare those capabilities with the nonlinear transfer function model by using the style of simulation and the study of two models as output variable and one model as input variable in addition t

... Show More
View Publication Preview PDF
Crossref
Publication Date
Thu Dec 01 2022
Journal Name
Baghdad Science Journal
Predictive Significance of Interleukins 17A and 33 in Risk of Relapsing–Remitting Multiple Sclerosis
...Show More Authors

Cytokines are signaling molecules between inflammatory cells that play a significant role in the pathogenesis of a disease. Among these cytokines are interleukins (ILs) 17A and 33, and accordingly, the current case-control study sought to investigate the role of each of the two cytokines in the risk of developing multiple sclerosis (MS). Sixty-eight relapsing-remitting MS (RRMS) Iraqi patients and twenty healthy individuals (control group) were enrolled. Enzyme linked immunosorbent assay (ELISA) kits were used to determine serum levels of IL-17A and IL-33. Results revealed that IL-17A and IL-33 levels were significantly higher in MS patients than in controls (14.1 ± 4.5 vs. 7.5 ± 3.8 pg/mL; p < 0.001 and 65.3 ± 16

... Show More
View Publication Preview PDF
Scopus (4)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Wed Dec 01 2021
Journal Name
Journal Of Economics And Administrative Sciences
Comparison Between Nelson-Olson Method and Two-Stage Limited Dependent Variables (2SLDV ) Method for the Estimation of a Simultaneous Equations System (Tobit Model)
...Show More Authors

This study relates to  the estimation of  a simultaneous equations system for the Tobit model where the dependent variables  ( )  are limited, and this will affect the method to choose the good estimator. So, we will use new estimations methods  different from the classical methods, which if used in such a case, will produce biased and inconsistent estimators which is (Nelson-Olson) method  and  Two- Stage limited dependent variables(2SLDV) method  to get of estimators that hold characteristics the good estimator .

That is , parameters will be estim

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Jun 01 2011
Journal Name
Journal Of Economics And Administrative Sciences
The effect of losing one view of the independent variableAnd its location in simple regression analysis
...Show More Authors

The objective of the research , is to shed light on the most important treatment of the problem of missing values of time series data and its influence in simple linear regression. This research deals with the effect of the missing values in independent variable only. This was carried out by proposing missing value from time series data which is complete originally and testing the influence of the missing value on simple regression analysis of data of an experiment related with the effect of the quantity of consumed ration on broilers weight for 15 weeks. The results showed that the missing value had not a significant effect as the estimated model after missing value was consistent and significant statistically. The results also

... Show More
View Publication Preview PDF
Crossref