Knowing the distribution of the mechanical rock properties and in-situ stresses for the field of interest is essential for many applications concerning reservoir geomechanics, including wellbore instability analysis, hydraulic fracturing, sand production, reservoir compaction, subsidence and water/gas injection throughout the filed life cycle. Determining the rock's mechanical properties is challenging because they cannot be directly measured at the borehole. The recovered carbonate core samples are limited and only provide discrete data for specific depths. This study focuses on creating a detailed 1D geomechanical model of the Mishrif reservoir in the Nasriyah oil field to identify the fault regime type for each unit in the formation. This is particularly important in CO2-EOR as it helps to understand reservoir connectivity and optimize CO2 injection. A geomechanical model is also necessary to evaluate the behavior of the reservoir and cap rock. This model can help predict the stress distribution, deformation, and potential failure zones. The Mishrif Formation has five units (from CI to MB-2). Based on the current results, the cap rock units (CI, CII) possess weak mechanical properties. The 1D mechanical earth model highlights different faulting regimes within the Mishrif Formation across various wells;as wells as, different trends of elasticand mechanical properties across the formation units. Some wells exhibit reverse (thrust) type faulting in the reservoir units and normal faulting in the barrier units. Conversely, other wells display strike-slip faulting in the reservoir units and reverse/thrust faulting in the barrier units. Also, the reservoir units exhibited it’s stiffness, brittle strength, it’s endurance to shear force and proved it’s geomechanical stability due to the high values of static young modulus, unconfined compressive strength, bulk modulus and relatively high mechanical properties it's important to note that the in-situ stress has significantly decreased in the barrier units.
This paper presents the finite strain results from seven oriented samples data on Tertiary sandstone of Muqdadiya Formation and (400) samples of pebbles and conglomerate of Bai –Hassan Formation at the southwestern limb of Al-Tib Anticline in the Southeastern part of Iraq. Measurement and analysis of finite strain are carried out including these rocks at fluvio- lacustrine environment. The present study followed Fry method. The computed strain was, in the form of ellipses, within three prepared perpendicular planes in a single sample and Center to Center method was used to determine the strain ratio of the these samples. The strain in the studied area is low, this is mainly due to the sampled rocks underwent brittle deformation d
... Show MoreThe current research deals with studying the petrophysical properties represented by the porosity and its distribution on the level of all units of the top and bottom of the Kirkuk Formation Group. The study area is located in Maysan province in the south-eastern part of Iraq in the Amara field. The Kirkuk Group was deposited in the Tertiary Age. The post-stack method using seismic inversion and creating a relationship between seismic data was accomplished using Hampson-Russel software at well Am-1 and Seismic lines Ama 20 and 30. The research results indicate high porosity values on top of the formation with a decrease in acoustic impedance (Z) and, therefore, a reduction in the density. At the same time, low porosity values were indica
... Show MoreIt is evident from this study that Yamama Formation is reservoir rocks and source rocks at the same time, based on occurrences of crude oil and source rocks. Bulk properties of Yamama oil in six wells as well as comparing several samples of Yamama oil by using the biological mark have indicated multi source of hydrocarbons with some pay having Jurassic and Lower Cretaceouse source affinity that belongs to the Yamama Formation.
The Fauqi field is located about 50Km North-East Amara town in Missan providence in Iraq. Fauqi field has 1,640 MMbbl STOIIP, which lies partly in Iran. Oil is produced from both Mishrif and Asmari zones. Geologically, the Fauqi anticline straddles the Iraqi/Iranian border and is most probably segmented by several faults. There are several reasons leading to drilling horizontal wells rather than vertical wells. The most important parameter is increasing oil recovery, particularly from thin or tight reservoir permeability. The Fauqi oil field is regarded as a giant field with approximately more than 1 billion barrels of proven reserves, but it has recently experienced low production rate problems in many of its existing wells. This study
... Show MoreDiesel engine oil was subjected to thermal oxidization (TO) for six periods of time (0 h, 24 h, 48 h, 72 h, 96 h, and 120 h) and was subsequently characterized by terahertz time domain spectroscopy (THz-TDS). The THz refractive index generally increased with oxidation time. The measurement method illustrated the potential of THz-TDS when a fixed setup with a single cuvette is used. A future miniaturized setup installed in an engine would be an example of a fixed setup. For the refractive index, there were highly significant differences among the oxidation times across most of the 0.3–1.7 THz range.
This study aims at making formation evaluation for Mishrif Formation in three wells within Noor Oilfield which are: No-1, No-2 and No-5. The study includes calculations of shale volume and porosity, water saturation using Archie method, measuring the bulk volume of water (BVW) and using Buckle plot, as well as measuring the movable and residual hydrocarbons. These calculations were carried out using Interactive Petrophysics (IP) version 3.5 software as well as using Petrel 2009 software for structural map construction and correlation purposes. It was found that the Mishrif Formation in Noor Oilfield is not at irreducible water saturation, though it is of good reservoir characteristics and hydrocarbon production especially at the upper pa
... Show MoreThe Zubair Formation is one of the major reservoirs of high production in the Rumaila oilfield, southern Iraq. The petrophysical properties analysis of the Upper Sand Member (Main Pay) of the Zubair Formation was conducted. The study includes results analysis of four wells distributed along the South Rumaila oilfield. Using a set of open well-logs, the main pay was divided into three main pay (AB, DJ and LN) units separated by two insulating shale units (C and K). The unit DJ was subdivided into three secondary reservoir units: D, F, H and the LN unit, which is split into L, M, and N. The research also includes the statistical analysis of the petrophysical properties, the calculation of the heterogeneity of the reservoir, and th
... Show MoreThe density-velocity relation is an important tool used to predict one of these two parameters from the other. A new empirical density –velocity equation was derived in Kf-4 well at Kifl Oil Field, south of Iraq. The density was derived from Gardner equation and the results obtained were compared with the density log (ROHB) in Kl-4 well. The petrophysical analysis was used to predict the variations in lithology of Yamama Formation depending on the well logs data, such as density, gamma, and neutron logs. The physical analysis of rocks depended on the density, Vp, and Vs values to estimate the elastic parameters, i.e. acoustic impedance (AI) and Vp/Vs ratio, to predict the lithology and hydrocarbon i
... Show More