Background: Levetiracetam is a member of the new antiepileptic drugs and has a broad spectrum effect, used as an adjunctive therapy in addition to monotherapy in the treatment of partial onset-seizures. The effect of levetiracetam on the development of embryo nervous system after maternal exposure during pregnancy has not been identified. Objective: to evaluate the effect of antiepileptic drug, levetiracetam (LEV) within its therapeutic dose 350mg/Kg body weight on albino female rat to clarify its effect on the developing cerebral cortex histologically. Material And Methods: Ten pregnant female rats were separated into two groups, control group and experimental group. They were obtained from the animal house of the high institute of infertility diagnosis and assisted reproductive technologies/Al-Nahrain university. They were maintained in environmentally controlled room at a temperature of 21–28±4Cº, 40–60% humidity, 12 hours light-dark cycle, in a noise free environment. Oral administration of 350mg/Kg of LEV to the experiment group while physiologic saline was given to control group. Results: microscopic assessment of the cerebral cortex defects in the cerebrum of the treated group when compared with the control group. There was disorganization of the cortical layers where boundaries were dimmed, the depth of the six layers were overlapping, decreased proportion of the stellate cells in the external granular layer therefore, reducing layer outline, vascular congestion and hemorrhage. Furthermore, observation shows cellular degeneration, necrosis, and nucleus karyorrhexis. Conclusion: this study demonstrate that they must take care from giving Levetiracetam to pregnant female because it induces histological changes in the brain of the newborn rat.
This paper presents a hybrid energy resources (HER) system consisting of solar PV, storage, and utility grid. It is a challenge in real time to extract maximum power point (MPP) from the PV solar under variations of the irradiance strength. This work addresses challenges in identifying global MPP, dynamic algorithm behavior, tracking speed, adaptability to changing conditions, and accuracy. Shallow Neural Networks using the deep learning NARMA-L2 controller have been proposed. It is modeled to predict the reference voltage under different irradiance. The dynamic PV solar and nonlinearity have been trained to track the maximum power drawn from the PV solar systems in real time.
Moreover, the proposed controller i
... Show MoreIn this paper, a compact multiband printed dipole antenna is presented as a candidate for use in wireless communication applications. The proposed fractal antenna design is based on the second level tent transformation. The space-filling property of this fractal geometry permits producing longer lengths in a more compact size. Theoretical performance of this antenna has been calculated using the commercially available software IE3D from Zeland Software Inc. This electromagnetic simulator is based on the method of moments (MoM). The proposed dipole antenna has been found to possess a considerable size reduction compared with the conventional printed or wire dipole antenna designed at the same design frequency and using the same substrate
... Show MoreHeart disease is a significant and impactful health condition that ranks as the leading cause of death in many countries. In order to aid physicians in diagnosing cardiovascular diseases, clinical datasets are available for reference. However, with the rise of big data and medical datasets, it has become increasingly challenging for medical practitioners to accurately predict heart disease due to the abundance of unrelated and redundant features that hinder computational complexity and accuracy. As such, this study aims to identify the most discriminative features within high-dimensional datasets while minimizing complexity and improving accuracy through an Extra Tree feature selection based technique. The work study assesses the efficac
... Show MoreCorrect grading of apple slices can help ensure quality and improve the marketability of the final product, which can impact the overall development of the apple slice industry post-harvest. The study intends to employ the convolutional neural network (CNN) architectures of ResNet-18 and DenseNet-201 and classical machine learning (ML) classifiers such as Wide Neural Networks (WNN), Naïve Bayes (NB), and two kernels of support vector machines (SVM) to classify apple slices into different hardness classes based on their RGB values. Our research data showed that the DenseNet-201 features classified by the SVM-Cubic kernel had the highest accuracy and lowest standard deviation (SD) among all the methods we tested, at 89.51 % 1.66 %. This
... Show MoreThe drones have become the focus of researchers’ attention because they enter into many details of life. The Tri-copter was chosen because it combines the advantages of the quadcopter in stability and manoeuvrability quickly. In this paper, the nonlinear Tri-copter model is entirely derived and applied three controllers; Proportional-Integral-Derivative (PID), Fractional Order PID (FOPID), and Nonlinear PID (NLPID). The tuning process for the controllers’ parameters had been tuned by using the Grey Wolf Optimization (GWO) algorithm. Then the results obtained had been compared. Where the improvement rate for the Tri-copter model of the nonlinear controller (NLPID) if compared with
Potential pattern of foodborne bacteriophages against multidrug-resistant pathogens was a promising hygienic strategy module. Post-antibiotics era becomes evident due to emerging of dramatic episodes of infectious foci harboring biofilm and multidrug-resistant pathogens transferred mainly throughout food chain. Vancomycin-resistant enterococci (VRE) were struggling among these new infectious emergencies. Phenotypic epigenetic transit tolerant drift cascaded by genetic resistant shift behaviors of recalcitrant VRE forbidden clones recovered from mastitis cases in Cows from territories of Abu-Ghraib, Al- Fudhaliyah and Al-Sadrya in Baghdad ecosystem were combated by redirected lytic bacteriophages cocktails recovered from the same raw-milk ec
... Show MoreThis research depends on the relationship between the reflected spectrum, the nature of each target, area and the percentage of its presence with other targets in the unity of the target area. The changes occur in Land cover have been detected for different years using satellite images based on the Modified Spectral Angle Mapper (MSAM) processing, where Landsat satellite images are utilized using two software programming (MATLAB 7.11 and ERDAS imagine 2014). The proposed supervised classification method (MSAM) using a MATLAB program with supervised classification method (Maximum likelihood Classifier) by ERDAS imagine have been used to get farthest precise results and detect environmental changes for periods. Despite using two classificatio
... Show MoreThis study is unique in this field. It represents a mix of three branches of technology: photometry, spectroscopy, and image processing. The work treats the image by treating each pixel in the image based on its color, where the color means a specific wavelength on the RGB line; therefore, any image will have many wavelengths from all its pixels. The results of the study are specific and identify the elements on the nucleus’s surface of a comet, not only the details but also their mapping on the nucleus. The work considered 12 elements in two comets (Temple 1 and 67P/Churyumoy-Gerasimenko). The elements have strong emission lines in the visible range, which were recognized by our MATLAB program in the treatment of the image. The percen
... Show More