In this paper, the memorization capability of a multilayer interpolative neural network is exploited to estimate a mobile position based on three angles of arrival. The neural network is trained with ideal angles-position patterns distributed uniformly throughout the region. This approach is compared with two other analytical methods, the average-position method which relies on finding the average position of the vertices of the uncertainty triangular region and the optimal position method which relies on finding the nearest ideal angles-position pattern to the measured angles. Simulation results based on estimations of the mobile position of particles moving along a nonlinear path show that the interpolative neural network approach outperf
... Show MoreThe research aimed to identify and build two specialized scales for cognitive load and mental stress and to identify the level of each of them among 110-meter steeplechase runners among youth, and to prepare a psychological counseling approach to reduce the level of cognitive load and mental stress among 110-meter steeplechase runners among youth, so that the two research hypotheses are that there are differences. There are statistically significant differences between the results of the pre- and post-tests of the experimental group in measuring cognitive load. There are statistically significant differences between the results of the pre- and post-tests of the experimental group in measuring mental stress. The experimental method w
... Show MoreWarm dark matter (WDM) models offer an attractive alternative to the current cold dark matter (CDM) cosmological model. We present a novel method to differentiate between WDM and CDM cosmologies, namely, using weak lensing; this provides a unique probe as it is sensitive to all of the “matter in the beam,” not just dark matter haloes and the galaxies that reside in them, but also the diffuse material between haloes. We compare the weak lensing maps of CDM clusters to those in a WDM model corresponding to a thermally produced 0.5 keV dark matter particle. Our analysis clearly shows that the weak lensing magnification, convergence, and shear distributions can be used to distinguish
Flexure members such as reinforced concrete (RC) simply supported beams subjected to two-point loading were analyzed numerically. The Extended Finite Element Method (XFEM) was employed for the treatment the non-smooth h behaviour such as discontinuities and singularities. This method is a powerful technique used for the analysis of the fracture process and crack propagation in concrete. Concrete is a heterogeneous material that consists of coarse aggregate, cement mortar and air voids distributed in the cement paste. Numerical modeling of concrete comprises a two-scale model, using mesoscale and macroscale numerical models. The effectiveness and validity of the Meso-Scale Approach (MSA) in modeling of the reinforced concrete beams w
... Show MorePraise be to God, who started his book with the praise of himself and prayers and peace be upon those who have no prophet after him and his family and companions and those who followed them with charity until the Day of Judgment.
For it is known to every researcher in jurisprudence and its origins that the semantics in terms of formulas for assignment are divided into an order and a prohibition, and I have seen it necessary to write a small research on the prohibition, and since this topic is complex, and has a great impact on the difference of scholars, I decided to write on one issue of it And it is the absolute prohibition and its effect on the difference of jurists, and what is meant by the absolute p
Density Functional Theory at the generalized-gradient approximation level coupled with large unit cell method is used to simulate the electronic structure of (II-VI) zinc-blende cadmium sulfide nanocrystals that have dimensions 2-2.5 nm. The calculated properties include lattice constant, conduction and valence bands width, energy of the highest occupied orbital, energy of the lowest unoccupied orbital, energy gap, density of states etc. Results show that lattice constant and energy gap converge to definite values. However, highest occupied orbital, lowest unoccupied orbital fluctuates indefinitely depending on the shape of the nanocrystal.