Bismuth oxide nanoparticle Bi2O3NPs has a wide range of applications and less adverse effects than conventional radio sensitizers. In this work, Bi2O3NPs (D1, D2) were successfully synthesized by using the biosynthesis method with varying bismuth salts, bismuth sulfate Bi2(SO4)3 (D1) or bismuth nitrate. Penta hydrate Bi(NO3)3.5H2O (D2) with NaOH with beta-vulgaris extract. The Bi2O3NPs properties were characterized by different spectroscopic methods to determine Bi2O3NPs structure, nature of bonds, size of nanoparticle, element phase, presence, crystallinity and morphology. The existence of the Bi2O3 band was verified by the FT-IR. The Bi2O3 NPs revealed an absorption peak in the UV-visible spectrum, with energy gap Eg = 3.80eV. The X-ray pattern (D1) matching that of card of COD File-No-96-152-6459 indicating the presence of homogeneous Bi2O3NPs, Scaning Electron Microscopy (SEM) displayed shaped monoclinic phase with average diameter 30.28 nm. The size, structure and composition of synthetic Bi2O3 Nps were determined using the (EDX) pattern. The XRD pattern (D2) corresponds to JCPDS File No. 27-50. The SEM of D2 showed crystalline rhomobohedrral phase with average diameter 34.89 nm. The EDX for both (D1, D2) samples reveals an aggregation of thin sheet cluster. The antibacterial activity of Bi2O3NPs from (D1, D2) was tested against (G-) Escherichia coli and (G+) staphylococcus aureus. All of these clinical pathogens were examined for antifungal activity against Candida albicans fungus, and the results were compared with the standard medication. The adsorption experiment was successfully conducted on the following metal ions (M+2 = Co, Ni and Cu), where the results proved removal simultaneously from water using Bi2O3NPs (D1, D2) based on the affinity of three metal ions and Bi2O3 NPs surface shape. The removal efficiencies of mixed (M+2 = Co, Ni and Cu) ions for D1 were 89.68%, 85.56% and 94.5%. The removal efficiencies for D2 were 93.3%, 87.7% and 88.54%, respectively.
In Automatic Speech Recognition (ASR) the non-linear data projection provided by a one hidden layer Multilayer Perceptron (MLP), trained to recognize phonemes, and has previous experiments to provide feature enhancement substantially increased ASR performance, especially in noise. Previous attempts to apply an analogous approach to speaker identification have not succeeded in improving performance, except by combining MLP processed features with other features. We present test results for the TIMIT database which show that the advantage of MLP preprocessing for open set speaker identification increases with the number of speakers used to train the MLP and that improved identification is obtained as this number increases beyond sixty.
... Show MoreThis experiment was conducted in order to estimate azulene and apigenin in chamomile flowers. Ethanol extracts were examined singly or in combination with some drugs in their biological activity against some pathogens causing skin infection. Ethanol extract was applied at a concentration of 40 mg/ml for the treatment of induced skin infection of mice. Among the topicals used, Claforan was found the most effective on microorganisms causing skin diseases; ethanol extract was more effective than the drug Candimazole solution 1%. HPLC was used for the determination of azulene and apigenin active compounds of chamomile plant.
Forty one isolates of genus Proteus were collected from 140 clinical specimens such as urine, stool, wound, burn, and ear swabs from patients of both sex. These isolates were identified to three Proteus spp. P. mirabilis, P. vulgaris and P. penneri .The ability of these bacteria to produce L-asparaginase II by using semi quantitative and quantitative methods was determined. P. vulgaris Pv.U.92 was distinguished for high level of L-asparaginase II production with specific activity 1.97 U/mg. Optimum conditions for enzyme production were determined; D medium with 0.3% of L-asparagine at pH 7.5 with temperature degree 35°C for incubation. Ultrasonication was used to destroy the P. vulgaris Pv.U.92 cells then ASNase II was extracted and pu
... Show MoreA laboratory experiment studied the effects of the green tea (Camellia sinensis L.) aqueous extract at concentrations of 10, 20, and 30 ppm on the germination and growth traits of the mung bean (Vigna radiata L.), carried out in 2021 at the Department of Biology, College of Education for Pure Sciences, Ibn Al-Haitham, University of Baghdad, Iraq. The results showed that Camellia sinensis green tea extracts played a vital role by significantly boosting all the examined characteristics compared with the control treatment. The aqueous extract of Green tea at concentrations of 10 and 20 ppm gave the best performance in increasing germination rates, germination speed, plant promoter indicator, and seedling strength compared with the control trea
... Show MoreNanoparticles of humic acid and iron oxide were impregnated on the inert sand to produce sorbent for treating groundwater contained of cadmium and copper ions by technology of permeable reactive barrier (PRB). Sewage sludge was the source of the humic acid to prepare the coated sand by humic acid—iron oxide (CSHAIO) sorbent; so, this work is consistent with sustainable development. For 10 mg/L metal concentration, batch tests at speed of 200 rpm signified that the removal efficiencies are greater than 90% at sorbent dosage 0.25 g/ 50 mL, pH 6 and contact time 1 h. The kinetic data was well described by the Pseudo first-order model indicating that physicosorption is the predominant mechanism. The maximum adsorption capacities (qmax) were c
... Show MoreThis study synthesized polyacetal from the reaction of polyvinyl alcohol with para-nitrobenzaldehyde. Polyacetal/polyvinylpyrrolidone polymer blends were prepared using solution casting. Gold nanoparticles (AuNPs) and silver nanoparticles (AgNPs) were biosynthesized using onion peel extract as the reducing agent. Nanocomposites were fabricated by blending polyacetal/PVP with AuNPs and AgNPs at different ratios. XRD and FESEM characterized the AuNPs and AgNPs. FTIR, FESEM, TGA, and DSC characterized the polyacetal, polymer blends, and nanocomposites. DSC and TGA confirmed the improved thermal stability of the polymer blends and nanocomposites. Nanocomposites demonstrated higher efficacy in inhibiting lung cancer cell lines compared t
... Show More