In this thesis, we introduced some types of fibrewise topological spaces by using a near soft set, various related results also some fibrewise near separation axiom concepts and a fibrewise soft ideal topological spaces. We introduced preliminary concepts of topological spaces, fibrewise topology, soft set theory and soft ideal theory. We explain and discuss new notion of fibrewise topological spaces, namely fibrewise soft near topological spaces, Also, we show the notions of fibrewise soft near closed topological spaces, fibrewise soft near open topological spaces, fibrewise soft near compact spaces and fibrewise locally soft near compact spaces. On the other hand, we studied fibrewise soft near forms of the more essential separation axioms of ordinary soft topology namely fibrewise soft near T_0 spaces, fibrewise soft near T_1 spaces, fibrewise soft near R_0 spaces, fibrewise soft near Hausdorff spaces, fibrewise soft near functionally Hausdorff spaces, fibrewise soft near regular spaces, fibrewise soft near completely regular spaces, fibrewise soft near normal spaces and fibrewise soft near functionally normal spaces. Too we add numerous outcomes about it. Finally, we introduced a notion fibrewise soft ideal topological spaces and give the results related it to, Further we obtain some properties in the light of the study notions fibrewise soft ideal open topological spaces, fibrewise soft ideal closed topological spaces and fibrewise soft near ideal topological spaces.
In this paper, a new type of supra closed sets is introduced which we called supra β*-closed sets in a supra topological space. A new set of separation axioms is defined, and its many properties are examined. The relationships between supra β*-Ti –spaces (i = 0, 1, 2) are studied and shown with instances. Additionally, new varieties of supra β*-continuous maps have been taken into consideration based on the supra β*-open sets theory.
The aim of this paper is to introduce and study new class of fuzzy function called fuzzy semi pre homeomorphism in a fuzzy topological space by utilizing fuzzy semi pre-open sets. Therefore, some of their characterization has been proved; In addition to that we define, study and develop corresponding to new class of fuzzy semi pre homeomorphism in fuzzy topological spaces using this new class of functions.
The concept of fuzzy orbit open sets under the mapping
In this paper, the concept of soft closure spaces is defined and studied its basic properties. We show that the concept soft closure spaces are a generalization to the concept of
This research presents the concepts of compatibility and edge spaces in
In this paper We introduce some new types of almost bi-periodic points in topological bitransfprmation groups and thier effects on some types of minimaliy in topological dynamics
In this paper we introduce a new class of sets called -generalized b- closed (briefly gb closed) sets. We study some of its basic properties. This class of sets is strictly placed between the class of gp- closed sets and the class of gsp- closed sets. Further the notion of b- space is introduced and studied.
2000 Mathematics Subject Classification: 54A05
The aim of the present work is to define a new class of closed soft sets in soft closure spaces, namely, generalized closed soft sets (
The concept of -closedness, a kind of covering property for topological spaces, has already been studied with meticulous care from different angles and via different approaches. In this paper, we continue the said investigation in terms of a different concept viz. grills. The deliberations in the article include certain characterizations and a few necessary conditions for the -closedness of a space, the latter conditions are also shown to be equivalent to -closedness in a - almost regular space. All these and the associated discussions and results are done with grills as the prime supporting tool.
A space X is named a πp – normal if for each closed set F and each π – closed set F’ in X with F ∩ F’ = ∅, there are p – open sets U and V of X with U ∩ V = ∅ whereas F ⊆ U and F’ ⊆ V. Our work studies and discusses a new kind of normality in generalized topological spaces. We define ϑπp – normal, ϑ–mildly normal, & ϑ–almost normal, ϑp– normal, & ϑ–mildly p–normal, & ϑ–almost p-normal and ϑπ-normal space, and we discuss some of their properties.