In this thesis, we introduced some types of fibrewise topological spaces by using a near soft set, various related results also some fibrewise near separation axiom concepts and a fibrewise soft ideal topological spaces. We introduced preliminary concepts of topological spaces, fibrewise topology, soft set theory and soft ideal theory. We explain and discuss new notion of fibrewise topological spaces, namely fibrewise soft near topological spaces, Also, we show the notions of fibrewise soft near closed topological spaces, fibrewise soft near open topological spaces, fibrewise soft near compact spaces and fibrewise locally soft near compact spaces. On the other hand, we studied fibrewise soft near forms of the more essential separation axioms of ordinary soft topology namely fibrewise soft near T_0 spaces, fibrewise soft near T_1 spaces, fibrewise soft near R_0 spaces, fibrewise soft near Hausdorff spaces, fibrewise soft near functionally Hausdorff spaces, fibrewise soft near regular spaces, fibrewise soft near completely regular spaces, fibrewise soft near normal spaces and fibrewise soft near functionally normal spaces. Too we add numerous outcomes about it. Finally, we introduced a notion fibrewise soft ideal topological spaces and give the results related it to, Further we obtain some properties in the light of the study notions fibrewise soft ideal open topological spaces, fibrewise soft ideal closed topological spaces and fibrewise soft near ideal topological spaces.
In this paper, the concept of normalized duality mapping has introduced in real convex modular spaces. Then, some of its properties have shown which allow dealing with results related to the concept of uniformly smooth convex real modular spaces. For multivalued mappings defined on these spaces, the convergence of a two-step type iterative sequence to a fixed point is proved
In this paper we show that if ? Xi is monotonically T2-space then each Xi is monotonically T2-space, too. Moreover, we show that if ? Xi is monotonically normal space then each Xi is monotonically normal space, too. Among these results we give a new proof to show that the monotonically T2-space property and monotonically normal space property are hereditary property and topologically property and give an example of T2-space but not monotonically T2-space.
The study deals with China's soft power and diplomacy in the Middle East, and it focuses specifically on the tools and foundations of China's soft diplomacy and how it achieves its goals in the region in addition to its challenges in the region. In this regard, the study also focuses on the Chinese Belt and Road Initiative and its soft foundations and how they serve China’s diplomacy and soft power in the region. The study ends with a set of conclusions, perhaps the most prominent of which is that diplomacy and soft power have become a fundamental pillar of China's foreign policy to achieve its foreign goals and to establish an international system compatible with China's principles. As for the Middle East, China has established a poli
... Show MoreIn this paper the definition of fuzzy anti-normed linear spaces and its basic properties are used to prove some properties of a finite dimensional fuzzy anti-normed linear space.
Within that research, we introduce fibrewise fuzzy types of the most important separation axioms in ordinary fuzz topology, namely fibrewise fuzzy (T 0 spaces, T 1 spaces, R 0 spaces, Hausdorff spaces, functionally Hausdorff spaces, regular spaces, completely regular spaces, normal spaces, and normal spaces). Too we add numerous outcomes about it.
In this paper,there are new considerations about the dual of a modular spaces and weak convergence. Two common fixed point theorems for a -non-expansive mapping defined on a star-shaped weakly compact subset are proved, Here the conditions of affineness, demi-closedness and Opial's property play an active role in the proving our results.
The main objective of this work is to introduce and investigate fixed point (F. p) theorems for maps that satisfy contractive conditions in weak partial metric spaces (W.P.M.S), and give some new generalization of the fixed point theorems of Mathews and Heckmann. Our results extend, and unify a multitude of (F. p) theorems and generalize some results in (W.P.M.S). An example is given as an illustration of our results.
In this paper by using δ-semi.open sets we introduced the concept of weakly δ-semi.normal and δ-semi.normal spaces . Many properties and results were investigated and studied. Also we present the notion of δ- semi.compact spaces and we were able to compare with it δ-semi.regular spaces