The effective insulation design of the stress grading (SG) system in form-wound stator coils is essential for preventing partial discharges and excessive heat generation under pulse-width modulation excitation. This paper proposes a method to find the optimal insulation design of the SG system aimed at reducing the dielectric and thermal stresses in the machine coil. The non-uniform transmission line model is used to predict the voltage propagation along the overhang, SG, and slot regions considering the variation in the physical properties of the insulation layers. The machine coil parameters for different insulation materials are calculated by using the finite element method. Two optimization algorithms, fmincon and particle swarm optimization (PSO), are applied and compared to find the optimal thickness and material properties of each insulation layer as well as the length and location of the SG system. The results under different rise-time excitation show that the optimized geometry by using PSO can produce a higher reduction in the dielectric and thermal stresses, as well as in the maximum overvoltage along the machine coil than the original geometry and the optimized geometry using fmincon. The machine coil model is validated by means of comparisons with experimental measurements.
In present project, new Schiff base of 4, 4'- (((1E, 1'E)-1,4-.phenylenebis- (methane-ylylidene))-bis-(azane-ylylidene)) bis-(5-(4-chlorophenyl) -4H -1,2,4-triazole-3-thione) (L3) has been synthesized by condensation of 4-amino-5-(4-chlorophenyl)-2,4-dihydro-3H-1,2,4-triazole-3-thione with benzene-1,4-dicarboxaldehyde. The new asymmetrical Schiff base (L3) used as a ligand to synthesize a new complex with Co(II), Ni(II), Cu(II), Pd(II), and Pt(IV) metal ions by 1:2 (Metal: ligand) ratio. New ligand and their complexes have been exanimated and Confirmed by Fourier-transform infrared (FT-IR), Ultraviolet-visible (UV-visible), Proton nuclear magnetic resonance (1HNMR), carbon13 nuclear magnetic resonance (13CNMR), carbon-hydrogen nitrogen sulf
... Show MoreInelastic transverse magnetic dipole electron scattering form
factors in 48Ca have been investigated through nuclear shell model
in an excited state energy Ex= 10.23 MeV which is so called
"mystery case" with different optional choices like effective
interaction, restricted occupation and core polarization interaction.
40Ca as an inert core will be adopted and four orbits with eight
particles distributed mainly in 2p1f model space and in some extend
restricted to make sure about the major accuse about this type of
transition. Theoretical results have been constituted mainly with
experimental data and compared with some important theoretical
results of the same transition.
Elastic magnetic electron scattering form factors in Ca-41 have been investigated. 1f7/2 subshell has been adopted as a model space with one neutron, and Millinar, Baymann and Zamick 1f7/2 model space effective interaction (F7MBZ) has been used as a model space effective interaction to generate the model space vectors for the M1, M3, M5, M7, and total form factors. Discarded space (core and higher configuration orbits) have been included through the first order perturbation theory to couple the partice-hole pair of excitation with 2ћω excitation energy in the calculation of the form factors and regarding the realistic interaction density dependence M3Y as a core polarization interaction with five sets of modern fitting parameters. Fina
... Show MoreThe proton momentum distributions (PMD) and the elastic
electron scattering form factors F(q) of the ground state for some
even mass nuclei in the 2p-1f shell for 70Ge, 72Ge, 74Ge and 76Ge are
calculated by using the Coherent Density Fluctuation Model (CDFM)
and expressed in terms of the fluctuation function (weight function)
|F(x)|2. The fluctuation function has been related to the charge
density distribution (CDD) of the nuclei and determined from the
theory and experiment. The property of the long-tail behavior at high
momentum region of the proton momentum distribution has been
obtained by both the theoretical and experimental fluctuation
functions. The calculated form factors F (q) of all nuclei under s
The splicing design of the existing road and the new road in the expansion project is an important part of the design work. Based on the analysis of the characteristics and the load effect of pavement structure on splicing, this paper points out that tensile crack or shear failure may occur at the splicing under the repeated action of the traffic load on the new/old pavement. According to the current structure design code of asphalt pavement in China, it is proposed that the horizontal tensile stress at the bottom of the splicing layer and the vertical shear stress at other layers of the splicing line should be controlled by adjusting the position and size of the excavated steps in addition to the conventional design ind
... Show MoreAny design subject to a set of forces contributing to the establishment of relations working to strengthen the internal elements of the design; any imbalance in these elements can make a fragmented and weak design, thus preventing it from achieving the goal or performance. Poor performance can be attributed to various factors: the extent and function of the elements and principles in the design, realization of the idea, especially in fashion design.
Moreover, there are many aspects of a design that go into achieving the realization of the designer’s idea. The design utilizes a lot of stimulants by drawing attention to its design, which is consistent with the need for psychological and material individuals. In this research, we will
The economical design of plate loaded by pressure can be obtained by using stiffeners instead of increasing the thickness of plate. The main subject of this work is to obtain the effect of stiffener height on the maximum stress in the plate subjected to pressure load. Different plate-stiffener sets are selected to find the effects of stiffener thickness, plate dimensions and pressure, on the optimum stiffener height. The models under consideration are square plates clamped rigidly from four edges. Finite Element method is used to analyze 160 different models by using the Finite Element software package ANSYS version 11. Another analysis method based on maximum stress equation is used to analyze 30 models. The graphical comparison of results
... Show MoreDirect measurements of drag force on two interacting particles arranged in the longitudinal direction for particle Reynolds numbers varying from J O to 103 are conducted using a micro-force measurement system. The effect of the interparticle distance and Reynolds number on the drag forces is examined. An empirical equation is obtained to describe the effect of the interparticle distance (l/d) on the dimensionless drag.