This study proposes a hybrid predictive maintenance framework that integrates the Kolmogorov-Arnold Network (KAN) with Short-Time Fourier Transform (STFT) for intelligent fault diagnosis in industrial rotating machinery. The method is designed to address challenges posed by non-linear and non-stationary vibration signals under varying operational conditions. Experimental validation using the FALEX multispecimen test bench demonstrated a high classification accuracy of 97.5%, outperforming traditional models such as SVM, Random Forest, and XGBoost. The approach maintained robust performance across dynamic load scenarios and noisy environments, with precision and recall exceeding 95%. Key contributions include a hardware-accelerated KAN architecture, adaptive feature selection, and integration of explainable AI for interpretability. This framework enables real-time, transparent diagnostics in energy-critical, resource-constrained environments, supporting improved asset lifecycle management and reduced downtime. The study advances AI-based condition monitoring, bridging theoretical innovation with practical reliability in the context of sustainable industrial energy systems.
The cost of pile foundations is part of the super structure cost, and it became necessary to reduce this cost by studying the pile types then decision-making in the selection of the optimal pile type in terms of cost and time of production and quality .So The main objective of this study is to solve the time–cost–quality trade-off (TCQT) problem by finding an optimal pile type with the target of "minimizing" cost and time while "maximizing" quality. There are many types In the world of piles but in this paper, the researcher proposed five pile types, one of them is not a traditional, and developed a model for the problem and then employed particle swarm optimization (PSO) algorithm, as one of evolutionary algorithms with t
... Show MoreEichhornia, or water hyacinth represents a serious threat to potable water basins. This problem is materialized majorly in consuming large amounts of water and dissolved Oxygen that is necessary for aquatic life, and minorly in hindering water streams. Even there are limited trials to overcome such pests, none of them presents an acceptable solution economically and logically. Chlorine is a well-known biocide and broadly used in water industry. It could give a possible method to fight such weed. To investigate that, concentration-time plot should be introduced similar to any other microorganisms; especially, bacteria in water. In this work, various doses of Chlorine along various time
We report on using a CO2 (10.6 µm) laser to debond the lithium disilicate veneers. Sixty-four sound human premolar teeth and 64 veneer specimens were used in the study. The zigzag movement via CO2 laser handpiece along with an air-cooled jet to prevent temperature elevation above the necrosis temperature limit (5.5 C°) was applied. The optimal deboning irradiation time was super-fast, at about 5 seconds at 3 Watt CO2 laser power. It is 20 times less than any previously published work for veneers debonding. The enamel beneath the debonded veneers has been assessed by atomic force microscopy (AFM) and shear stress technique as criteria for the easiness of debonding. The
... Show MoreProgression in Computer networks and emerging of new technologies in this field helps to find out new protocols and frameworks that provides new computer network-based services. E-government services, a modernized version of conventional government, are created through the steady evolution of technology in addition to the growing need of societies for numerous services. Government services are deeply related to citizens’ daily lives; therefore, it is important to evolve with technological developments—it is necessary to move from the traditional methods of managing government work to cutting-edge technical approaches that improve the effectiveness of government systems for providing services to citizens. Blockchain technology is amon
... Show MoreThis paper explores VANET topics: architecture, characteristics, security, routing protocols, applications, simulators, and 5G integration. We update, edit, and summarize some of the published data as we analyze each notion. For ease of comprehension and clarity, we give part of the data as tables and figures. This survey also raises issues for potential future research topics, such as how to integrate VANET with a 5G cellular network and how to use trust mechanisms to enhance security, scalability, effectiveness, and other VANET features and services. In short, this review may aid academics and developers in choosing the key VANET characteristics for their objectives in a single document.
The weather of Iraq has longer summer season compared with other countries. The ambient temperature during this season reaches over 50 OC which makes the evaporative cooling system suitable for this climate. In present work, the two-stage evaporative cooling system is studied. The first stage is indirect evaporative cooling (IEC) represented by two heat exchangers with the groundwater flow rate (5 L/min). The second stage is direct evaporative cooling (DEC) which represents three pads with groundwater flow rates of (4.5 L/min). The experimental work was conducted in July, August, September, and October in Baghdad. Results showed that overall evaporative efficiency of the system (two coils with three pads each
... Show More