The efficient sequencing techniques have significantly increased the number of genomes that are now available, including the Crenarchaeon Sulfolobus solfataricus P2 genome. The genome-scale metabolic pathways in Sulfolobus solfataricus P2 were predicted by implementing the “Pathway Tools†software using MetaCyc database as reference knowledge base. A Pathway/Genome Data Base (PGDB) specific for Sulfolobus solfataricus P2 was created. A curation approach was carried out regarding all the amino acids biosynthetic pathways. Experimental literatures as well as homology-, orthology- and context-based protein function prediction methods were followed for the curation process. The “PathoLogicâ€
... Show MorePhotovoltaic (PV) devices are widely used renewable energy resources and have been increasingly manufactured by many firms and trademarks. This condition makes the selection of right product difficult and requires the development of a fast, accurate and easy setup that can be implemented to test available samples and select the cost effective, efficient, and reliable product for implementation. An automated test setup for PV panels using LabVIEW and several microcontroller-based embedded systems were designed, tested, and implemented. This PV testing system was fully automated, where the only human intervention required was the instalment of PV panel and set up of required testing conditions. The designed and implemented system was
... Show MoreResearchers employ behavior based malware detection models that depend on API tracking and analyzing features to identify suspected PE applications. Those malware behavior models become more efficient than the signature based malware detection systems for detecting unknown malwares. This is because a simple polymorphic or metamorphic malware can defeat signature based detection systems easily. The growing number of computer malwares and the detection of malware have been the concern for security researchers for a large period of time. The use of logic formulae to model the malware behaviors is one of the most encouraging recent developments in malware research, which provides alternatives to classic virus detection methods. To address the l
... Show MoreWith the growth of the use mobile phones, people have become increasingly interested in using Short Message Services (SMS) as the most suitable communications service. The popularity of SMS has also given rise to SMS spam, which refers to any unwanted message sent to a mobile phone as a text. Spam may cause many problems, such as traffic bottlenecks or stealing important users' information. This paper, presents a new model that extracts seven features from each message before applying a Multiple Linear Regression (MLR) to assign a weight to each of the extracted features. The message features are fed into the Extreme Learning Machine (ELM) to determine whether they are spam or ham. To evaluate the proposed model, the UCI bench
... Show MoreThe determination of manganese (II) using flow injection analysis with chemiluminescence detection was investigated. Mn2+ in sample solutions injected into a carrier stream of sodium bismuthate (NaBiO3) were oxidised to form MnO4- ions which were capable of producing luminescence after reaction with luminol/KOH in a flow cell. The linear range of the system is from 20 to 80 mg/L with a detection limit 8 mg/L. The proposed system is suitable for determination of Mn2+ in steel alloys after dissolution, filtration and dilution at a rate of approximately 60 samples per hour with a relative standard deviation (RSD)1.2%. Statistical comparison between the proposed system and standard spectrophotometric method revealed that there is no signific
... Show MoreIt is the regression analysis is the foundation stone of knowledge of statistics , which mostly depends on the ordinary least square method , but as is well known that the way the above mentioned her several conditions to operate accurately and the results can be unreliable , add to that the lack of certain conditions make it impossible to complete the work and analysis method and among those conditions are the multi-co linearity problem , and we are in the process of detected that problem between the independent variables using farrar –glauber test , in addition to the requirement linearity data and the lack of the condition last has been resorting to the
... Show MoreIn this paper, new brain tumour detection method is discovered whereby the normal slices are disassembled from the abnormal ones. Three main phases are deployed including the extraction of the cerebral tissue, the detection of abnormal block and the mechanism of fine-tuning and finally the detection of abnormal slice according to the detected abnormal blocks. Through experimental tests, progress made by the suggested means is assessed and verified. As a result, in terms of qualitative assessment, it is found that the performance of proposed method is satisfactory and may contribute to the development of reliable MRI brain tumour diagnosis and treatments.
Data mining has the most important role in healthcare for discovering hidden relationships in big datasets, especially in breast cancer diagnostics, which is the most popular cause of death in the world. In this paper two algorithms are applied that are decision tree and K-Nearest Neighbour for diagnosing Breast Cancer Grad in order to reduce its risk on patients. In decision tree with feature selection, the Gini index gives an accuracy of %87.83, while with entropy, the feature selection gives an accuracy of %86.77. In both cases, Age appeared as the most effective parameter, particularly when Age<49.5. Whereas Ki67 appeared as a second effective parameter. Furthermore, K- Nearest Neighbor is based on the minimum err
... Show More