Preferred Language
Articles
/
dBY9_IoBVTCNdQwC1sYK
Efficient computational methods for solving the nonlinear initial and boundary value problems

In this paper, three approximate methods namely the Bernoulli, the Bernstein, and the shifted Legendre polynomials operational matrices are presented to solve two important nonlinear ordinary differential equations that appeared in engineering and applied science. The Riccati and the Darcy-Brinkman-Forchheimer moment equations are solved and the approximate solutions are obtained. The methods are summarized by converting the nonlinear differential equations into a nonlinear system of algebraic equations that is solved using Mathematica®12. The efficiency of these methods was investigated by calculating the root mean square error (RMS) and the maximum error remainder (𝑀𝐸𝑅n) and it was found that the accuracy increases with increasing degree of polynomial solutions (n). In addition, the convergence of the proposed approximate methods is given based on the Banach fixed point theorem.

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Thu Sep 01 2011
Journal Name
Journal Of Economics And Administrative Sciences
Determination Of The Efficient Production Plans For Al-Shaheed Public Company By Using Tatget Motad Model Under Risk And Uncertainty

The research aims to derive the efficient industrial plans for Al – shaheed public company under risk by using Target MOTAD as a linear alternative  model for the quadratic programming models.

The results showed that there had been a sort of (trade- off) between risk and the expected gross margins. And if the studied company strives to get high gross margin, it should tolerate risk and vice versa. So the management  of Al- Shaheed Company to be invited to apply the suitable procedures in the production process, in order to get efficient plans that improves it's  performance .

Crossref
View Publication Preview PDF
Publication Date
Sun Dec 01 2013
Journal Name
Journal Of Economics And Administrative Sciences
CALCULATION BIASES FOR COEFFICIENTS AND SCALE PARAMETER FOR LINEAR (TYPE 1) EXTREME VALUE REGRESSION MODEL FOR LARGEST VALUES

Abstract

Characterized by the Ordinary Least Squares (OLS) on Maximum Likelihood for the greatest possible way that the exact moments are known , which means that it can be found, while the other method they are unknown, but approximations to their biases correct to 0(n-1) can be obtained by standard methods. In our research expressions for approximations to the biases of the ML estimators (the regression coefficients and scale parameter) for linear (type 1) Extreme Value Regression Model for Largest Values are presented by using the advanced approach depends on finding the first derivative, second and third.

Crossref
View Publication Preview PDF
Publication Date
Sat Dec 01 2018
Journal Name
Ain Shams Engineering Journal
Crossref (6)
Crossref
View Publication
Publication Date
Tue Sep 30 2014
Journal Name
Iosr Journal Of Mathematics
Modification Adomian Decomposition Method for solving Seventh OrderIntegro-Differential Equations

In this paper, a method based on modified adomian decomposition method for solving Seventh order integro-differential equations (MADM). The distinctive feature of the method is that it can be used to find the analytic solution without transformation of boundary value problems. To test the efficiency of the method presented two examples are solved by proposed method.

View Publication
Publication Date
Sun Jul 04 2021
Journal Name
(al-qadisiyah-journal Of Pure Science(qjps
Reliable Iterative Method for solving Volterra - Fredholm Integro Differential Equations

The aim of this paper is to propose a reliable iterative method for resolving many types of Volterra - Fredholm Integro - Differential Equations of the second kind with initial conditions. The series solutions of the problems under consideration are obtained by means of the iterative method. Four various problems are resolved with high accuracy to make evident the enforcement of the iterative method on such type of integro differential equations. Results were compared with the exact solution which exhibits that this technique was compatible with the right solutions, simple, effective and easy for solving such problems. To evaluate the results in an iterative process the MATLAB is used as a math program for the calculations.

View Publication
Publication Date
Thu Apr 26 2018
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Normalization Bernstein Basis For Solving Fractional Fredholm-Integro Differential Equation

In this work, we employ a new normalization Bernstein basis for solving linear Freadholm of fractional integro-differential equations  nonhomogeneous  of the second type (LFFIDEs). We adopt Petrov-Galerkian method (PGM) to approximate solution of the (LFFIDEs) via normalization Bernstein basis that yields linear system. Some examples are given and their results are shown in tables and figures, the Petrov-Galerkian method (PGM) is very effective and convenient and overcome the difficulty of traditional methods. We solve this problem (LFFIDEs) by the assistance of Matlab10.   

Crossref
View Publication Preview PDF
Publication Date
Wed Apr 29 2020
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Alternating Directions Implicit Method for Solving Homogeneous Heat Diffusion Equation

     An Alternating Directions Implicit method is presented to solve the homogeneous heat diffusion equation when the governing equation is a bi-harmonic equation (X) based on Alternative Direction Implicit (ADI). Numerical results are compared with other results obtained by other numerical (explicit and implicit) methods. We apply these methods it two examples (X): the first one, we apply explicit when the temperature .

Crossref
View Publication Preview PDF
Publication Date
Sun Oct 22 2023
Journal Name
Iraqi Journal Of Science
Variational Iteration Method for Solving Multi-Fractional Integro Differential Equations

In this paper, we present an approximate method for solving integro-differential equations of multi-fractional order by using the variational iteration method.
First, we derive the variational iteration formula related to the considered problem, then prove its convergence to the exact solution. Also we give some illustrative examples of linear and nonlinear equations.

View Publication Preview PDF
Publication Date
Sun Jan 01 2023
Journal Name
Communications In Mathematical Biology And Neuroscience
Scopus (1)
Scopus Clarivate Crossref
View Publication
Publication Date
Sun Jan 20 2019
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
A parallel Numerical Algorithm For Solving Some Fractional Integral Equations

In this study, He's parallel numerical algorithm by neural network is applied to type of integration of fractional equations is Abel’s integral equations of the 1st and 2nd kinds. Using a Levenberge – Marquaradt training algorithm as a tool to train the network. To show the efficiency of the method, some type of Abel’s integral equations is solved as numerical examples. Numerical results show that the new method is very efficient problems with high accuracy.

Crossref (1)
Crossref
View Publication Preview PDF