Biped robots have gained much attention for decades. A variety of researches has been conducted to make them able to assist or even substitute for humans in performing special tasks. In addition, studying biped robots is important in order to understand the human locomotion and to develop and improve control strategies for prosthetic and orthotic limbs. Some challenges encountered in the design of biped robots are: (1) biped robots have unstable structures due to the passive joint located at the unilateral foot-ground contact. (2) They have different configuration when switching from walking phase to another. During the singlesupport phase, the robot is under-actuated, while turning into an over-actuated system during the double-support phase. (3) Biped robots have many degrees of freedom (DOFs). (4) Biped robots interact with different unknown environments. Therefore, this work attempts to investigate and resolve different issues encountered in dynamics, walking pattern generators and control of biped robots; the details as follows: • Dynamics Two walking patterns have been modeled using two well-known formulations: Lagrangian and the modified recursive Newton-Euler (N-E) formulations. The first walking pattern moves with 6 DOFs during the single support phase (SSP) changing its configuration with 7 DOFs during the double support phase (DSP) (the stance foot will move directly during the DSP). Whereas the other walking pattern has 6 DOFs during all walking phases (the SSP and the two sub-phases of the DSP); the stance foot will be fixed during the first sub-phase of the DSP. These two walking pattern are different in configuration and number of phases during the DSP. To resolve the problem of over-actuation, a linear transition function is proposed to ensure smooth transition for the biped from the SSP to the DSP and vice versa. If we assume ideal dynamic response, this strategy can resolve the discontinuity in input control torque and ground reaction forces. • Walking pattern generators Two methods have been used to generate walking patterns of biped mechanism which are (1) optimal control theory and (2) center of gravity (COG)-based model. Computational optimal control has been performed to investigate the effects of some imposed constraints on biped locomotion, such as enforcing swing foot to move level to the ground, hip motion with constant height etc. finite difference approach has been used to transcribe infinite dimensional optimal control problem into finite dimensional suboptimal control problem. Then parameter optimization has been used to get suboptimal trajectory of the biped with the imposing different constraints. In general, any artificially imposed constraint to biped locomotion can lead to increase in value of input control torques. On the other hand, suboptimal trajectory of biped robot during complete gait cycle had been accomplished with different cases such that continuous dynamic response occurs. Enforcing the biped locomotion to move with linear transition of zero-moment point (ZMP) during the DSP can lead to more energy consumption. Using the simple COG-based model, a comparative study has been conducted to generate continuous motion for COG of the biped; all these methods depend on linear pendulum model. It has been shown all these methods are equivalent. On the other hand, the effect of foot configuration has been investigated. Foot rotation can improve biped configuration at heel strike by controlling foot angle. In addition, foot motion with impact can give some freedom and uniform biped configuration compared with motion without impact. To compensate for the deviation of ZMP trajectory due to approximate model of the COG, a novel strategy has been proposed to satisfy kinematic and dynamic constraints, as well as singularity condition. A stable motion has been obtained for the target walking patterns. • Low-level control Two control schemes have been proposed based on dynamics formulations which are conventional adaptive control based on local approximation technique and Lagrangian formulation, and virtual decomposition control (VDC) based on local approximation technique and recursive N-E formulation. In the first approach (conventional control), a new representation of dynamic matrices has been coined which is computationally efficient than other representation (sparse-base representation, Kronecker product etc.). Controller structures for the SSP and the DSP have been designed in details. Since adaptive control assumes no prior knowledge of estimated weighting matrices; therefore, zero input control torques could be result in at the beginning of each phase. Consequently, discontinuous dynamic response could result. The VDC is an efficient tool for complex robotic system such as biped robot. Therefore each subsystem (link, joint) has been controlled using adaptive approximation–based VDC. A novel optimization technique has been used to deal with continuous dynamic response; however, using zero initial weighting matrices for estimation dynamic matrices and vectors could result in zero input control at beginning of each walking phases.
this paper presents a novel method for solving nonlinear optimal conrol problems of regular type via its equivalent two points boundary value problems using the non-classical
Multilocus haplotype analysis of candidate variants with genome wide association studies (GWAS) data may provide evidence of association with disease, even when the individual loci themselves do not. Unfortunately, when a large number of candidate variants are investigated, identifying risk haplotypes can be very difficult. To meet the challenge, a number of approaches have been put forward in recent years. However, most of them are not directly linked to the disease-penetrances of haplotypes and thus may not be efficient. To fill this gap, we propose a mixture model-based approach for detecting risk haplotypes. Under the mixture model, haplotypes are clustered directly according to their estimated d
Administrative procedures in various organizations produce numerous crucial records and data. These
records and data are also used in other processes like customer relationship management and accounting
operations.It is incredibly challenging to use and extract valuable and meaningful information from these data
and records because they are frequently enormous and continuously growing in size and complexity.Data
mining is the act of sorting through large data sets to find patterns and relationships that might aid in the data
analysis process of resolving business issues. Using data mining techniques, enterprises can forecast future
trends and make better business decisions.The Apriori algorithm has bee
The control of an aerial flexible joint robot (FJR) manipulator system with underactuation is a difficult task due to unavoidable factors, including, coupling, underactuation, nonlinearities, unmodeled uncertainties, and unpredictable external disturbances. To mitigate those issues, a new robust fixed-time sliding mode control (FxTSMC) is proposed by using a fixed-time sliding mode observer (FxTSMO) for the trajectory tracking problem of the FJR attached to the drones system. First, the underactuated FJR is comprehensively modeled and converted to a canonical model by employing two state transformations for ease of the control design. Then, based on the availability of the measured states, a cascaded FxTSMO (CFxTSMO) is constructed to estim
... Show MoreObjective: The aim of the present study is to assess the practices of nurses towards standard precautions at Azady
Teaching Hospital in the City of Kirkuk.
Methodology: A descriptive study, which uses the assessment approach and it was conducted on nurses from January
18th, 2009 to September 30th, 2009, using non-probability sampling a purposive sample of (37) subject (male and
female nurses) who worked at surgical wards in Azady Teaching Hospital in Kirkuk city was selected. Two study
instruments were utilized for proper data collection [questionnaire and observational checklist]; a questionnaire was
developed for the purpose of the study. It was comprised of two parts which included the nurses' demographic
characte
This study was carried out in epidemically field with common reed (Phragmites communis Trin.) plants in the Nassiriah cityThiQur governorate ,during 2009/2010 to investigate the influence of plant growth regulator gibberellin (GA3)and cytokinin (CK) in increasing the efficacy of glyphosate and Fluazifop-butyl in common reed control . Factorial experiment in RCBD was used with three replications in tow Factors . Glyphosate 3500mg .l־¹ gave the higher mean of injury score of common reed and lower mean of common reed shoots , shoots dry weight and rhizome dry weight(3.59,22.01 shoot /0.5m² ,0.57Kg / 0.5m² and 250.50gm /0,5m² ),respectively. All plant growth regulators gaves the higher means of common reed shoots and rhizome dry weight com
... Show MorePollution of the aquatic environment and the depletion of the natural resource cause imbalance in the natural balance of the river environment and contributes to the deterioration of life and the killing of living organisms. Most of the old and modern cities and urban centers were set up close to the rivers because water enters the main lifeblood and all its facilities. The proximity of cities to rivers caused environmental problems resulting from the dumping of residues of these cities to a large and continuous, these wastes include all uses of the city (industrial, agricultural, residential and commercial) and others. The accumulation of these wastes inside the rivers water kills life and makes them unsuitable for various uses to bury
... Show MoreContracting cancer typically induces a state of terror among the individuals who are affected. Exploring how chemotherapy and anxiety work together to affect the speed at which cancer cells multiply and the immune system’s response model is necessary to come up with ways to stop the spread of cancer. This paper proposes a mathematical model to investigate the impact of psychological scare and chemotherapy on the interaction of cancer and immunity. The proposed model is accurately described. The focus of the model’s dynamic analysis is to identify the potential equilibrium locations. According to the analysis, it is possible to establish three equilibrium positions. The stability analysis reveals that all equilibrium points consi
... Show MoreIn this study, we investigate about the run length properties of cumulative sum (Cusum) and The exponentially weighted moving average (EWMA) control charts, to detect positive shifts in the mean of the process for the poisson distribution with unknown mean. We used markov chain approach to compute the average and the standard deviation for run length for Cusum and EWMA control charts, when the variable under control follows poisson distribution. Also, we used the Cusum and the EWMA control charts for monitoring a process mean when the observations (products are selected from Al_Mamun Factory ) are identically and independently distributed (iid) from poisson distribution i
... Show MoreToday, the five Caspian riparian states on the shores of the Caspian Sea (Kazakhstan, Turkmenistan, Azerbaijan, Russia, and Iran) have become a front for ambitions and international and regional competition, especially in light of the features and characteristics that natural geography has endowed them with and their enjoyment of a group of economic and mineral wealth that are not optimally exploited so far which made it a strategic attraction area for international trends and interventions, especially Western ones. It is a battleground for major international companies aiming to monopolize promising industrial investments in order to impose control and influence on the region’s resources and economic wealth and thus impose their forei
... Show More