Preferred Language
Articles
/
d0LlopsBMeyNPGM3sN4f
Modeling, Walking Pattern Generators and Adaptive Control of Biped Robot
...Show More Authors

Biped robots have gained much attention for decades. A variety of researches has been conducted to make them able to assist or even substitute for humans in performing special tasks. In addition, studying biped robots is important in order to understand the human locomotion and to develop and improve control strategies for prosthetic and orthotic limbs. Some challenges encountered in the design of biped robots are: (1) biped robots have unstable structures due to the passive joint located at the unilateral foot-ground contact. (2) They have different configuration when switching from walking phase to another. During the singlesupport phase, the robot is under-actuated, while turning into an over-actuated system during the double-support phase. (3) Biped robots have many degrees of freedom (DOFs). (4) Biped robots interact with different unknown environments. Therefore, this work attempts to investigate and resolve different issues encountered in dynamics, walking pattern generators and control of biped robots; the details as follows: • Dynamics Two walking patterns have been modeled using two well-known formulations: Lagrangian and the modified recursive Newton-Euler (N-E) formulations. The first walking pattern moves with 6 DOFs during the single support phase (SSP) changing its configuration with 7 DOFs during the double support phase (DSP) (the stance foot will move directly during the DSP). Whereas the other walking pattern has 6 DOFs during all walking phases (the SSP and the two sub-phases of the DSP); the stance foot will be fixed during the first sub-phase of the DSP. These two walking pattern are different in configuration and number of phases during the DSP. To resolve the problem of over-actuation, a linear transition function is proposed to ensure smooth transition for the biped from the SSP to the DSP and vice versa. If we assume ideal dynamic response, this strategy can resolve the discontinuity in input control torque and ground reaction forces. • Walking pattern generators Two methods have been used to generate walking patterns of biped mechanism which are (1) optimal control theory and (2) center of gravity (COG)-based model. Computational optimal control has been performed to investigate the effects of some imposed constraints on biped locomotion, such as enforcing swing foot to move level to the ground, hip motion with constant height etc. finite difference approach has been used to transcribe infinite dimensional optimal control problem into finite dimensional suboptimal control problem. Then parameter optimization has been used to get suboptimal trajectory of the biped with the imposing different constraints. In general, any artificially imposed constraint to biped locomotion can lead to increase in value of input control torques. On the other hand, suboptimal trajectory of biped robot during complete gait cycle had been accomplished with different cases such that continuous dynamic response occurs. Enforcing the biped locomotion to move with linear transition of zero-moment point (ZMP) during the DSP can lead to more energy consumption. Using the simple COG-based model, a comparative study has been conducted to generate continuous motion for COG of the biped; all these methods depend on linear pendulum model. It has been shown all these methods are equivalent. On the other hand, the effect of foot configuration has been investigated. Foot rotation can improve biped configuration at heel strike by controlling foot angle. In addition, foot motion with impact can give some freedom and uniform biped configuration compared with motion without impact. To compensate for the deviation of ZMP trajectory due to approximate model of the COG, a novel strategy has been proposed to satisfy kinematic and dynamic constraints, as well as singularity condition. A stable motion has been obtained for the target walking patterns. • Low-level control Two control schemes have been proposed based on dynamics formulations which are conventional adaptive control based on local approximation technique and Lagrangian formulation, and virtual decomposition control (VDC) based on local approximation technique and recursive N-E formulation. In the first approach (conventional control), a new representation of dynamic matrices has been coined which is computationally efficient than other representation (sparse-base representation, Kronecker product etc.). Controller structures for the SSP and the DSP have been designed in details. Since adaptive control assumes no prior knowledge of estimated weighting matrices; therefore, zero input control torques could be result in at the beginning of each phase. Consequently, discontinuous dynamic response could result. The VDC is an efficient tool for complex robotic system such as biped robot. Therefore each subsystem (link, joint) has been controlled using adaptive approximation–based VDC. A novel optimization technique has been used to deal with continuous dynamic response; however, using zero initial weighting matrices for estimation dynamic matrices and vectors could result in zero input control at beginning of each walking phases.

View Publication Preview PDF
Quick Preview PDF
Publication Date
Sun Nov 01 2020
Journal Name
Solid State Technology
Access Control Security Review: Concepts and Models
...Show More Authors

HS Saeed, SS Abdul-Jabbar, SG Mohammed, EA Abed, HS Ibrahem, Solid State Technology, 2020

View Publication
Publication Date
Wed Nov 21 2018
Journal Name
International Journal Of Control, Automation And Systems
Design and Stability Analysis of a Fractional Order State Feedback Controller for Trajectory Tracking of a Differential Drive Robot
...Show More Authors

View Publication
Scopus (21)
Crossref (18)
Scopus Clarivate Crossref
Publication Date
Sat Oct 04 2025
Journal Name
Mesopotamian Journal Of Computer Science
Enhanced IOT Cyber-Attack Detection Using Grey Wolf Optimized Feature Selection and Adaptive SMOTE
...Show More Authors

The Internet of Things (IoT) has significantly transformed modern systems through extensive connectivity but has also concurrently introduced considerable cybersecurity risks. Traditional rule-based methods are becoming increasingly insufficient in the face of evolving cyber threats.  This study proposes an enhanced methodology utilizing a hybrid machine-learning framework for IoT cyber-attack detection. The framework integrates a Grey Wolf Optimizer (GWO) for optimal feature selection, a customized synthetic minority oversampling technique (SMOTE) for data balancing, and a systematic approach to hyperparameter tuning of ensemble algorithms: Random Forest (RF), XGBoost, and CatBoost. Evaluations on the RT-IoT2022 dataset demonstrat

... Show More
View Publication Preview PDF
Scopus Crossref
Publication Date
Mon Sep 01 2014
Journal Name
Engineering And Technology Journal
Analysis of the Capacity, Spectral Efficiency and Probability of Outage of Adaptive Mobile Channel for WiMAX System
...Show More Authors

Preview PDF
Publication Date
Sat Dec 01 2018
Journal Name
2018 Third Scientific Conference Of Electrical Engineering (scee)
An Intelligent Cognitive System Design for Mobile Robot based on Optimization Algorithm
...Show More Authors

View Publication
Scopus (7)
Scopus Crossref
Publication Date
Thu Dec 28 2023
Journal Name
Journal Européen Des Systèmes Automatisés
Design of a Hybrid Adaptive Controller for Series Elastic Actuators of Robots
...Show More Authors

View Publication Preview PDF
Scopus (1)
Crossref (1)
Scopus Crossref
Publication Date
Tue Nov 01 2011
Journal Name
International Journal Of Mechanical And Materials Engineering
Simulation and design optimization of magneto rheological control valve
...Show More Authors

Magneto-rheological (MR) Valve is one of the devices generally used to control the speed of Hydraulic actuator using MR fluid. The performance of valve depends on the magnetic circuit design. Present study deals with a new design of MR valve. The finite element analysis is carried out on this valve to optimize its design. The design of the magnetic circuit is accomplished by magnetic finite element software such as Finite Element Method Magnetic (FEMM). The Model dimensions of MR valve, material properties and the circuit properties of valve coil are taken into account. The results of analysis are presented in terms of magnetic strength and magnetic flux density. The valve can be operated with variable flow rate by varying the current. It i

... Show More
View Publication Preview PDF
Scopus (2)
Scopus
Publication Date
Tue Sep 01 2009
Journal Name
Journal Of Economics And Administrative Sciences
Test the impact of instability on the pattern of spending by the Iraqi consumer
...Show More Authors

يحتل موضوع الاستهلاك اهمية كبيرة في الدراسات الاقتصادية في حالتي السلم والحرب وذلك لارتباط هذا الموضوع بالانسان والمجتمع ولكونه احد مؤشرات مستوى الرفاهية الاقتصادية والاجتماعية وتزداد اهمية ضبط حركة هذا المتغير السلوكي والكمي في زمن الحرب اكثر مما هو عليه في حالة السلم، في هذا البحث تم استخدام بيانات احصائية عن الانفاق الاستهلاكي الخاص ونصيب الفرد من الدخل القومي اضافة الى الرقم القياسي لاسعار المس

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun Jul 09 2023
Journal Name
Journal Of Engineering
Modeling of Electron and Lattice Temperature Distribution Through Lifetime of Plasma Plume
...Show More Authors

When employing shorter (sub picosecond) laser pulses, in ablation kinetics the features appear which can no longer be described in the context of the conventional thermal model. Meanwhile, the ablation of materials with the aid of ultra-short (sub picosecond) laser pulses is applied for micromechanical processing. Physical mechanisms and theoretical models of laser ablation are discussed. Typical associated phenomena are qualitatively regarded and methods for studying them quantitatively are considered. Calculated results relevant to ablation kinetics for a number of substances are presented and compared with experimental data. Ultra-short laser ablation with two-temperature model was quantitatively investigated. A two-temperature model

... Show More
View Publication Preview PDF
Crossref
Publication Date
Mon Feb 04 2019
Journal Name
Journal Of The College Of Education For Women
THE PORTRAIT OF THE ARTIST AS A ROBOT: A LITERARY LOOK AT E-POETRY
...Show More Authors

This study examines the validity of e-poetry as an acceptable literary genre. The
thematic, stylistic and esthetic features of a selected number of e-poems produced by
poetry generators are analyzed for this purpose. The e-poems are then compared with a
number of works written by Dada poets in order to establish the literary merit of the
former.

View Publication Preview PDF