Oscillation criteria are obtained for all solutions of the first-order linear delay differential equations with positive and negative coefficients where we established some sufficient conditions so that every solution of (1.1) oscillate. This paper generalized the results in [11]. Some examples are considered to illustrate our main results.
In this paper a modified approach have been used to find the approximate solution of ordinary delay differential equations with constant delay using the collocation method based on Bernstien polynomials.
FUZZY CONTROLLERS F'OR SINGLE POINT CONTROLLER-I (SPC-l) SYSTEMS
In this research, the program SEEP / W was used to compute the value of seepage through the homogenous and non-homogeneous earth dam with known dimensions. The results show that the relationship between the seepage and water height in upstream of the dam to its length for saturated soil was nonlinear when the dam is homogenous. For the non-homogeneous dam, the relationship was linear and the amount of seepage increase with the height of water in upstream to its length. Also the quantity of seepage was calculated using the method of (Fredlund and Xing, 1994) and (Van Genuchten, 1980) when the soil is saturated – unsaturated, the results referred to that the higher value of seepage when the soil is saturated and the lowe
... Show MoreThe purpose of this paper is to define fuzzy subspaces for fuzzy space of orderings and we prove some results about this definition in which it leads to a lot of new results on fuzzy space of orderings. Also we define the sum and product over such spaces such that: If f = < a1,…,an > and g = < b1,…bm>, their sum and product are f + g = < a1…,an, b1, …, bm> and f × g =
In this article, we aim to define a universal set consisting of the subscripts of the fuzzy differential equation (5) except the two elements and , subsets of that universal set are defined according to certain conditions. Then, we use the constructed universal set with its subsets for suggesting an analytical method which facilitates solving fuzzy initial value problems of any order by using the strongly generalized H-differentiability. Also, valid sets with graphs for solutions of fuzzy initial value problems of higher orders are found.
In this paper, we study the growth of solutions of the second order linear complex differential equations insuring that any nontrivial solutions are of infinite order. It is assumed that the coefficients satisfy the extremal condition for Yang’s inequality and the extremal condition for Denjoy’s conjecture. The other condition is that one of the coefficients itself is a solution of the differential equation .
The aim of this paper is to present the numerical method for solving linear system of Fredholm integral equations, based on the Haar wavelet approach. Many test problems, for which the exact solution is known, are considered. Compare the results of suggested method with the results of another method (Trapezoidal method). Algorithm and program is written by Matlab vergion 7.