Heat pipes and two‐phase thermosyphon systems are passive heat transfer systems that employ a two‐phase cycle of a working fluid within a completely sealed system. Consequently, heat exchangers based on heat pipes have low thermal resistance and high effective thermal conductivity, which can reach up to the order of (105 W/(m K)). In energy recovery systems where the two streams should be unmixed, such as airconditioning systems of biological laboratories and operating rooms in hospitals, heat pipe heat exchangers (HPHEs) are recommended. In this study, an experimental and theoretical study was carried out on the thermal performance of an air‐to‐air HPHE filled with two refrigerants as working fluids, R22 and R407c. The heat pipe heat exchanger used was composed of two rows of copper heat pipes in a staggered manner, with 11 pipes per row. Tests were conducted at different airflow rates of 0.14, 0.18, and 0.22m3/h, evaporator inlet‐air temperatures of 40, 44, and 50°C, filling ratios of 45%, 70%, and 100%, and ratios of heat capacity rate of the evaporator to condenser sections (Ce/Cc) of 1 and 1.5. For HPHE's steady‐state operation, a mathematical model for heat‐transfer performance was set and solved using MATLAB. Results illustrated that the heat transfer rate was in direct proportion with the evaporator inlet‐air temperature and flow rate. The highest HPHE's effectiveness was obtained at a 100% filling ratio and (Ce/Cc) of 1.5. The predicted and experimental values of condenser outletair temperature were in good agreement, with a maximum difference of 3%. HPHE's effectiveness was found to increase with the increase in evaporator inletair temperature and number of transfer units (NTU) and with the decrease in airflow rate, up to 33% and 20% for refrigerants R22 and R407c, respectively. Refrigerant R22 was the superior of the two refrigerants investigated.
A microbubble air flotation technique was used to remove chromium ions from simulated wastewater (e.g. water used for electroplating, textiles, paints and pigments, and tanning leather). Experimental parameters were investigated to analyze the flotation process and determine the removal efficiency. These parameters included the location of the sampling port from the bottom of the column, where the diffuser is located to the top of flotation column (30, 60, and 90 cm), the type of surfactant (anionic, SDS, or cationic, CTAB) and its concentration (5, 10, 15, and 20 mg/L), the pH of the initial solution (3, 5, 7, 9, and 11), the initial contaminant concentration (10, 20, 30, and 40 mg/L), the gas flow rate (0.1, 0.2, 0.3, and 0.5 L/mi
... Show MoreIt is known that energy subiect has ocuppied a lot of scientests minds about
how to treat the traditional energy and the renewing energy . we know that
most traditional energy coal , oil , Natural gas, neuclear fuel , are limited
guantiy and alsow subjected to be ended .Statics studies refer to reserve
of oil in world will exhausted btween ( 2075- 2100) and alsow cosl too .
While neuclear fuerl which the world seek today through explod the uranium
atom ( 233) the therum atom (239) and neuclear mxied through ruemlear
mixing , These energy have effect on environment and humanity speciaty if
they are used in militery purposes .
For all theses scientests srarch for resources of renewing enery through
researches
The characterization of ZnO and ZnO:In thin films were confirmed by spray pyrolysis technique. The films were deposited onto glass substrate at a temperature of 450°C. Optical absorption measurements were also studied by UV-VIS technique in the wavelength range 300-900 nm which was used to calculate the optical constants. The changes in dispersion and Urbach parameters were investigated as a function of In content. The optical energy gap was decreased and the wide band tails were increased in width from 616 to 844 eV as the In content increased from 0wt.% to 3wt.%. The single–oscillator parameters were determined also the change in dispersion was investigated before and after doping.
An experimental model is used to simulate the loss of soil lateral confinement due to excavation nearby an individual axially loaded pile. The effects of various parameters, such as the horizontal distance of excavation, depth of excavation and pile slenderness ratios are investigated. The experimental analysis results showed the effect of excavation is more remarkable as the horizontal distance of excavation becomes closer to the pile than half pile length. The effect of excavation diminishes gradually as the horizontal distance increases beyond that distance for all the investigated pile slenderness ratios and depths of excavation. The pile head deflection, settlement and bending moments along pile increase with decreasing horizontal d
... Show More
To create a highly efficient photovoltaic-thermal (PV-T) system and maximise the energy and exergy efficiency, this study aims to propose an innovative configuration of a PV-T system comprising wavy tubes with twisted-tape inserts. Following the validation of a numerical model, a parametric study has been conducted to assess the geometrical effects of twisted tape and wavy tubes, as well as the coolant fluid type and velocity, on the overall performance of a PV-T system, located in Shiraz, Iran. It is found that employing twisted tape improves the energy and exergy efficiency by approx. 6.3%. The best configuration yields 12.4% and 16.8% increase in energy and exergy efficiency compared to conventional PV systems. This is achieved at 15% vo
... Show More