Heat pipes and two‐phase thermosyphon systems are passive heat transfer systems that employ a two‐phase cycle of a working fluid within a completely sealed system. Consequently, heat exchangers based on heat pipes have low thermal resistance and high effective thermal conductivity, which can reach up to the order of (105 W/(m K)). In energy recovery systems where the two streams should be unmixed, such as airconditioning systems of biological laboratories and operating rooms in hospitals, heat pipe heat exchangers (HPHEs) are recommended. In this study, an experimental and theoretical study was carried out on the thermal performance of an air‐to‐air HPHE filled with two refrigerants as working fluids, R22 and R407c. The heat pipe heat exchanger used was composed of two rows of copper heat pipes in a staggered manner, with 11 pipes per row. Tests were conducted at different airflow rates of 0.14, 0.18, and 0.22m3/h, evaporator inlet‐air temperatures of 40, 44, and 50°C, filling ratios of 45%, 70%, and 100%, and ratios of heat capacity rate of the evaporator to condenser sections (Ce/Cc) of 1 and 1.5. For HPHE's steady‐state operation, a mathematical model for heat‐transfer performance was set and solved using MATLAB. Results illustrated that the heat transfer rate was in direct proportion with the evaporator inlet‐air temperature and flow rate. The highest HPHE's effectiveness was obtained at a 100% filling ratio and (Ce/Cc) of 1.5. The predicted and experimental values of condenser outletair temperature were in good agreement, with a maximum difference of 3%. HPHE's effectiveness was found to increase with the increase in evaporator inletair temperature and number of transfer units (NTU) and with the decrease in airflow rate, up to 33% and 20% for refrigerants R22 and R407c, respectively. Refrigerant R22 was the superior of the two refrigerants investigated.
Background: Multiple sclerosis is a chronic autoimmune inflammatory demyelinating disease of the central nervous system of unknown etiology. Different techniques and magnetic resonance image sequences are widely used and compared to each other to improve the detection of multiple sclerosis lesions in the spinal cord. Objective: To evaluate the ability of MRI short tau inversion recovery sequences in improvementof multiple sclerosis spinal cord lesion detection when compared to T2 weighted image sequences. Type of the study: A retrospective study. Methods: this study conducted from 15thAugust 2013 to 30thJune 2014 at Baghdad teaching hospital. 22 clinically definite MS patients with clinical features suggestive of spinal cord involvement,
... Show MoreThere are significant differences between the pre and post-tests in favor of the post-test in the tests) stroke volume (S.V), cardiac thrust (C.O.P), left ventricular volume, maximum oxygen consumption Vo2max), which indicates the effect of the proposed training approach.There are significant differences between the pre and post-tests in favor of the post-test in the achievement level test with air rifle shooting for young female shooters, which indicates the effect of the proposed training curriculum.There are no significant differences between the pre and post-tests in the tests (heart rate (HR) before exercise, heart rate (HR) after exercise, systolic blood pressure rate before exercise, systolic blood pressure rate after exercis
... Show MoreABSTRACT Background: One of the major problems of all ceramic restorations is their probable fracture against the occlusal forces. The objective of this in vitro study was to evaluate the effect of two gingival finishing lines (90°shoulder and deep chamfer) on the fracture resistance of full contour CAD/CAM and heat press all-ceramic crowns. Materials and Methods: Thirty two maxillary first premolars were prepared to receive full contour CAD/CAM (zolid) and heat press (Cergo Kiss) ceramic crowns using a special paralleling device (Parallel-A-Prep). The teeth were divided into four groups according to the type of finishing line prepared. Each crown was cemented to its corresponding tooth using self-etch, self-adhesive dual cure resin ceme
... Show MoreThe objective of this review was to describe the COVID-19 complications after recovery.
The researchers systematically reviewed studies that reported post-COVID-19 complications from three databases: PubMed, Google Scholar and the World Health Organization (WHO) COVID-19 database. The search was conducted between 21 November 2020 and 14 January 2021. Inclusion criteria were articles written in English, with primary data, reporting complications of COVID-19 after full
New nanotechnology-based approaches are increasingly being investigated for enhanced oil recovery (EOR), with a particular focus on heavy oil reservoirs. Typically, the addition of a polymer to an injection fluid advances the sweep efficiency and mobility ratio of the fluid and leads to a higher crude oil recovery rate. However, harsh reservoir conditions, including high formation salinity and temperature, can limit the performance of such polymer fluids. Recently, nanofluids, that is, dispersions of nanoparticles (NPs) in a base fluid, have been recommended as EOR fluids; however, such nanofluids are unstable, even under ambient conditions. In this work, a combination of ZrO2 NPs and the polyacrylamide (PAM) polymer (ZrO2 NPs–PAM) was us
... Show MoreA set of ten drug compounds containing an amino group in the structure were determined theoretically. The parameters were entered into a model to forecast the optimal values of practical (log P) medicinal molecules. The drugs were evaluated theoretically using different types of calculations which are AM1, PM3, and Hartree Fock at the basis set (HF/STO-3G). The Physico-chemical data like (entropy, total energy, Gibbs Free Energy,…etc were computed and played an important role in the predictions of the practical lipophilicity values. Besides, Eigenvalues named HOMO and LUMO were determined. Linearity was shown when correlated between the experimental data with the evaluated physical properties. The statistical analysis was used to analy
... Show MoreThe gas material balance equation (MBE) has been widely used as a practical as well as a simple tool to estimate gas initially in place (GIIP), and the ultimate recovery (UR) factor of a gas reservoir. The classical form of the gas material balance equation is developed by considering the reservoir as a simple tank model, in which the relationship between the pressure/gas compressibility factor (p/z) and cumulative gas production (Gp) is generally appeared to be linear. This linear plot is usually extrapolated to estimate GIIP at zero pressure, and UR factor for a given abandonment pressure. While this assumption is reasonable to some extent for conventional reservoirs, this may incur