Heat pipes and two‐phase thermosyphon systems are passive heat transfer systems that employ a two‐phase cycle of a working fluid within a completely sealed system. Consequently, heat exchangers based on heat pipes have low thermal resistance and high effective thermal conductivity, which can reach up to the order of (105 W/(m K)). In energy recovery systems where the two streams should be unmixed, such as airconditioning systems of biological laboratories and operating rooms in hospitals, heat pipe heat exchangers (HPHEs) are recommended. In this study, an experimental and theoretical study was carried out on the thermal performance of an air‐to‐air HPHE filled with two refrigerants as working fluids, R22 and R407c. The heat pipe heat exchanger used was composed of two rows of copper heat pipes in a staggered manner, with 11 pipes per row. Tests were conducted at different airflow rates of 0.14, 0.18, and 0.22m3/h, evaporator inlet‐air temperatures of 40, 44, and 50°C, filling ratios of 45%, 70%, and 100%, and ratios of heat capacity rate of the evaporator to condenser sections (Ce/Cc) of 1 and 1.5. For HPHE's steady‐state operation, a mathematical model for heat‐transfer performance was set and solved using MATLAB. Results illustrated that the heat transfer rate was in direct proportion with the evaporator inlet‐air temperature and flow rate. The highest HPHE's effectiveness was obtained at a 100% filling ratio and (Ce/Cc) of 1.5. The predicted and experimental values of condenser outletair temperature were in good agreement, with a maximum difference of 3%. HPHE's effectiveness was found to increase with the increase in evaporator inletair temperature and number of transfer units (NTU) and with the decrease in airflow rate, up to 33% and 20% for refrigerants R22 and R407c, respectively. Refrigerant R22 was the superior of the two refrigerants investigated.
Cams are considered as one of the most important mechanical components that depends the contact action to do its job and suffer a lot of with drawbacks to be predicted and overcame in the design process. this work aims to investigate the induced cam contact and the maximum shear stress energy or (von misses) stresses during the course of action analytically using Hertz contact stress equation and the principal stress formulations to find the maximum stress value and its position beneath the contacting surfaces. The experimental investigation adopted two dimensions photoelastic technique to analyze cam stresses under a plane polarized light. The problem has been numerically simulated using Ansys software version 15 as FE
... Show MoreNumerical simulations have been investigated to study the external free convective heat transfer from a vertically rectangular interrupted fin arrays. The continuity, Naver-Stockes and energy equations have been solved for steady-state, incompressible, two dimensional, laminar with Boussiuesq approximation by Fluent 15 software. The performance of interrupted fins was evaluated to gain the optimum ratio of interrupted length to fin length (
The thermal properties (thermal transfer and thermal expansion coefficient) of the enhanced epoxy resin (MWCNT / x-TiO2) were studied by weight ratios with the values (0%, 3%, 5%, 7% and 10%) and a constant ratio of 3% of MWCNT. The ultrasonic technology was used to prepare the neat and composites which were then poured into Teflon molds according to standard conditions. Thermo-analyzer sensor technology was used to measure thermal transfer (thermal conductivity, thermal flow, thermal diffusion, thermal energy and heat resistance). The thermal conductivity, flow, and thermal conductivity values were increased sequentially by increasing the weight ratio of the filler while the results of stored energy values an
... Show More
In this work, a test room was built in Baghdad city, with (2*1.5*1.5) m3 in dimensions, while the solar chimneys (SC) were designed with aspect ratio (ar) bigger than 12. Test room was supplied by many solar collectors; vertical single side of air pass with ar equals 25, and tilted 45o double side of air passes with ar equals 50 for each pass, both collectors consist of flat thermal energy storage box collector (TESB) that covered by transparent clear acrylic sheet, third type of collector is array of evacuated tubular collectors with thermosyphon in 45o instelled in the bottom of TESB of vertical SC. The TESB was
... Show MoreThis work examines numerically the effects of particle size, particle thermal conductivity and inlet velocity of forced convection heat transfer in uniformly heated packed duct. Four packing material (Aluminum, Alumina, Glass and Nylon) with range of thermal conductivity (from200 W/m.K for Aluminum to 0.23 W/m.K for Nylon), four particle diameters (1, 3, 5 and 7 cm), inlet velocity ( 0.07, 0.19 and 0.32 m/s) and constant heat flux ( 1000, 2000 and 3000 W/ m 2) were investigated. Results showed that heat transfer (average Nusselt number Nuav) increased with increasing packing conductivity; inlet velocity and heat flux, but decreased with increasing particle size.Also, Aluminum average Nusselt number is about (0.85,2.
... Show MoreThe current study was conducted on 504(Ros-308) broiler chicks reared in Animal farms belong to College of Agriculture, University of Baghdad during the period 28/9/2017- 9/11/2018 to determine the effect of ginseng additive on the performance of chicks. Results of study showed a significant effect (p≤0.05) of exposure period an Red blood cells, 3.56×106ml3 of blood was in bird, which exposure to 2hr at heat shock. In 42 day at age 106 ×38 ml3 of blood can noticed in the blood at birds, which exposure to 2hr in 21-42 days at 3 days of age. No significant effect at ginseng on blood cells. The results showed a significant effect (p≤0.05) of interaction on red blood cells at 21 and 42 days of age and the average cells between these ages
... Show MoreThe present work reports the performance of three types of polyethersulfone (PES) membrane in the removal of highly polluting and toxic lead Pb2+ and cadmium Cd2+ ions from a single salt. This study investigated the effect of operating variables, including pH, types of PES membrane, and feed concentration, on the separation process. The transport parameters and mass transfer coefficient (k) of the membranes were estimated using the combined film theory-solution-diffusion (CFSD), combined film theory-Spiegler-Kedem (CFSK), and combined film theory-finely-porous (CFFP) membrane transport models. Various parameters were used to estimate the enrichment factors, concentration polarization modulus, and Péclet number. The pH values signif
... Show MoreIn this research, the dynamics process of charge transfer from the sensitized D35CPDT dye to tin(iv) oxide( ) or titanium dioxide ( ) semiconductors are carried out by using a quantum model for charge transfer. Different chemical solvents Pyridine, 2-Methoxyethanol. Ethanol, Acetonitrile, and Methanol have been used with both systems as polar media surrounded the systems. The rate for charge transfer from photo-excitation D35CPDTdye and injection into the conduction band of or semiconductors vary from a to for system and from a to for the system, depending on the charge transfer parameters strength coupling, free energy, potential of donor and acceptor in the system. The charge transfer rate in D35CPDT / the system is
... Show MoreIn this research, the dynamics process of charge transfer from the sensitized D35CPDT dye to tin(iv) oxide( ) or titanium dioxide ( ) semiconductors are carried out by using a quantum model for charge transfer. Different chemical solvents Pyridine, 2-Methoxyethanol. Ethanol, Acetonitrile, and Methanol have been used with both systems as polar media surrounded the systems. The rate for charge transfer from photo-excitation D35CPDTdye and injection into the conduction band of or semiconductors vary from a to for system and from a to for the system, depending on the charge transfer parameters strength coupling, free energy, potential of donor and acceptor in the system. The charge transfer rate in D35CPDT / the syst
... Show More