The implementation of nanotechnology in all industries is one of most significant research fields. Nanoparticles have shown a promising application in subsurface fields. On the other hand, various surfactants have been used in the oil industry to reduce oil/water interfacial tension and also widely used to stabilize the nano-suspensions. The primary objective of this study was to investigate the improvements of surfactants ability in term of interfacial tension (γ) reduction utilizing addition of silicon dioxide nanoparticles at different temperatures and salinity. The pendant drop technique has been used to measure γ and electrical conductivity has been used to measure the critical micelle concentration (CMC). The synergistic effects of surfactant-nanoparticles, salt-nanoparticles, and surfactant-salt-nanoparticles on γ reduction and the critical micelle concentration of the surfactants have been investigated. Extensive series of experiments for γ and CMC measurements were performed. The optimum condition for each formulation is shown. We conclude that nanoparticles-surfactant can significantly reduce γ if correctly formulated.
A reliable differential pulse polarographic (DPP) method has been developed and applied for the determination of ibuprofen IBU in dosage form with dropping mercury electrode (DME) versus Ag/AgCl. The best peak was found at cathodic peak of -1.18 V in phosphate buffer at pH=4 and 0.025M of KNO3 as supporting electrolyte. In order to obtaine the highest sensitivity, instrumental and experimental parameters were examined including the type and concentration of supporting electrolyte, pH of buffer solution, pulse amplitude and voltage step time. Diffusion current showed a direct linear relationship to ibuprofen concentration in the range of (5 – 30) μg. mL-1 (2.43× 10-5
... Show MoreNanofluids (dispersion of nanoparticles in a base fluid) have been suggested as promising agents in subsurface industries including enhanced oil recovery. Nanoparticles can easily pass through small pore throats in reservoirs formations; however, physicochemical interactions between nanoparticles and between nanoparticles and rocks can cause a significant retention of nanoparticles. This study investigated the transport, attach, and retention of silica nanoparticles in core plugs. The hydrophilic silica nanoparticles were injected into limestone core as nanofluid of different nanoparticles size (5 nm, and 20 nm), concentration (0.005 – 0.1 wt% SiO2), and base fluid salinity (0 – 3 wt% NaCl) at different temperatures (23, and 50 °C). D
... Show MoreMishrif Formation is the main reservoir in oil-fields (North Rumaila, South Rumaila, Majnoon, Zubair and West Qurna) which located at Basrah southern Iraq. The Inductively coupled plasma-Mass spectrometer (ICP-MS) was used for the water chemistry analysis and Scanning Electron Microprobe (SEM) for the purpose of mineralogy diagnosis. A weak acidic water of salinity six-time greater than seawater plays a role in generating the formation pressure and controlling the fluid flow. The potentiometric subsurface maps were modeled and the direction of super-pressure sites that are of a great importance in the oil exploration were marked to pay attention during future drilling.
The aim of present work is to study the removal of phenol present in aqueous feed solution by the emulsion liquid membrane technique using kerosene as a diluent, sodium hydroxide as a stripping agent, and sorbitan monooleate (Span 80) as a surfactant. The parameters studied were: surfactant concentration, volume ratio of membrane phase to internal phase, and stirring speed. It was found that more than 98% of phenol can be removed at the conditions were surfactant concentration 2% (v/v), volume ratio of membrane phase to internal phase 5:1 and stirring speed 400 rpm. Maximum phenol extraction efficiency at 7 minutes of process time was observed. It was found that there was a good agreement between the standard kerosene an
... Show MoreThe CO2-Assisted Gravity Drainage process (GAGD) has been introduced to become one of the mostinfluential process to enhance oil recovery (EOR) methods in both secondary and tertiary recovery through immiscibleand miscible mode. Its advantages came from the ability of this process to provide gravity-stable oil displacement forenhancing oil recovery. Vertical injectors for CO2 gas have been placed at the crest of the pay zone to form a gas capwhich drain the oil towards the horizontal producing oil wells located above the oil-water-contact. The advantage ofhorizontal well is to provide big drainage area and small pressure drawdown due to the long penetration. Manysimulation and physical models of CO2-AGD process have been implemented
... Show MoreAn oxidative polymerization approach was used to create polyaniline (PANI) and Fe2O3 /PANI nanoparticle combination. Various characterization approaches were used to investigate the structural, morphological, and Fe2O3 /PANI nanoparticle structures. The findings support the synthesis of polycrystalline nanoparticle PANI and Fe2O3 /PANI spherical nanoparticle composites. Gram-positive bacteria are tested for antibacterial activity. Various quantities of Nanoparticles of PANI and Fe2O3 /PANI nanoparticle composites were used to test Staph-aureus and gram-negative bacteria, E-coli, and candida species. PANI has antibacterial properties against all microo
... Show MoreA competitive adsorption of Cu2+, Ni2+, and Cd2+ ions from a synthetic wastewater onto nanomaterial was studied.(Fe3O4) nanoparticles obtained from US Research Nanomaterials, Inc., Houston, TX 77084, (USA), was used as nanosorbent. Experimental parameters included pH, initial metal concentrations, and temperature were studied for nanosorbent. The uptake capacity 11.5, 6.07 and 11.1 mg/g for Cu2+, Ni2+and Cd2+, respectively, onto nanosorbent . The optimum pH values was 6 and the contact time was 50 min. for Cu2+, Ni2+and Cd2+, respectively. The equilibrium isotherm for
... Show More