Curcumin (Cur) possesses remarkable pharmacological properties, including cardioprotective, neuroprotective, antimicrobial, and anticancer activities. However, the utilization of Cur in pharmaceuticals faces constraints owing to its inadequate water solubility and limited bioavailability. To overcome these hurdles, there has been notable focus on exploring innovative formulations, with nanobiotechnology emerging as a promising avenue to enhance the therapeutic effectiveness of these complex compounds. We report a novel safe, effective method for improving the incorporation of anticancer curcumin to induce apoptosis by reducing the expression levels of miR20a and miR21. The established method features three aspects that, to our knowledge, have not been formally verified: (1) use of a novel formula to incorporate curcumin, (2) use of all biocompatible biodegradable materials to produce this formula without leaving harmful residues, and (3) an incorporation process at temperatures of approximately 50 °C. The formula was prepared from lecithin (LE), and chitosan (CH) with an eco-friendly emulsifying agent and olive oil as the curcumin solvent. The formula was converted to nanoscale through ultrasonication and probe sonication at a frequency of 20 kHz. Transmission electron microscopy showed that the nano formula was spherical in shape with sizes ranging between 49.7 nm in diameter and negative zeta potentials ranging from 28 to 34 mV. Primers miR20a and miR21 were designed for molecular studies. Nearly complete curcumin with an encapsulation efficiency of 91.1% was established using a straight-line equation. The nano formula incorporated with curcumin was used to prepare formulations that exhibited anticancer activities. The apoptosis pathway in cancer cells was activated by the minimum inhibitory concentration of the nano formula. These findings suggest the potential of this nanoformulation as an effective and selective cancer treatment that does not affect the normal cells.
The adsorption ability of Iraqi initiated calcined granulated montmorillonite to adsorb Symmetrical Schiff Base Ligand 4,4’-[hydrazine-1, 2-diylidenebis (methan-1-yl-1-ylidene)) bis (2-methoxyphenol)] derived from condensation reaction of hydrazine hydrate and 4-hydroxy-3-methoxybenzaldehyde, from aqueous solutions has been investigated through columnar method.The ligand (H2L) adsorption found to be dependent on adsorbent dosage, initial concentration and contact time.All columnar experiments were carried out at three different pH values (5.5, 7and 8) using buffer solutions at flow rate of (3 drops/ min.),at room temperature (25±2)°C. The experimental isotherm data were analyzed using Langmuir, Freundlich and Temkin equations. The monol
... Show MoreThe effect of thickness variation on some physical properties of hematite α-Fe2O3 thin films was investigated. An Fe2O3 bulk in the form of pellet was prepared by cold pressing of Fe2O3 powder with subsequent sintering at 800 . Thin films with various thicknesses were obtained on glass substrates by pulsed laser deposition technique. The films properties were characterized by XRD, and FT-IR. The deposited iron oxide thin films showed a single hematite phase with polycrystalline rhombohedral crystal structure .The thickness of films were estimated by using spectrometer to be (185-232) nm. Using Debye Scherrerś formula, the average grain size for the samples was found to be (18-32) nm. Atomic force microscopy indicated that the films had
... Show More