This study included synthesizing silver nanoparticles (AgNPs) in a green method using AgNO3 solution with glucose exposed to microwave radiation. The prepared NPs were also characterized using ultraviolet and visible (UV-vis) spectroscopy and scanning electron microscopy (SEM). The UV/vis spectroscopy confirmed the production of AgNPs, while SEM analysis showed that the typical spherical AgNPs were 30 nm and 50 nm in size for the NPs prepared using black tea (B) and green tea (G) as reducing agent, respectively. The changes in some of the biochemical parameters related to the liver and kidneys have been analyzed to evaluate the probable toxic effects of AgNPs. 40 adult male mice were included in this study. To assess the probable he
... Show MoreNanoencapsulation, employing safe materials, holds substantial promise for enhancing bioactive compounds’ delivery, stability, and bioactivity. In this study, we present an innovative and safe methodology for augmenting the incorporation of the anticancer agent, curcumin, thereby inducing apoptosis by downregulating miR20a and miR21 expression. Our established methodology introduces three pivotal elements that, to our knowledge, have not undergone formal validation: (1) Novel formulation: We introduce a unique formula for curcumin incorporation. (2) Biocompatibility and biodegradability: our formulation exclusively consists of biocompatible and biodegradable constituents, ensuring t
Curcumin (Cur) possesses remarkable pharmacological properties, including cardioprotective, neuroprotective, antimicrobial, and anticancer activities. However, the utilization of Cur in pharmaceuticals faces constraints owing to its inadequate water solubility and limited bioavailability. To overcome these hurdles, there has been notable focus on exploring innovative formulations, with nanobiotechnology emerging as a promising avenue to enhance the therapeutic effectiveness of these complex compounds. We report a novel safe, effective method for improving the incorporation of anticancer curcumin to induce apoptosis by reducing the expression levels of miR20a and miR21. The established
A novel, safe and efficient method was developed to encapsulate a blend of essential oils (EOs) into biodegradable nanoparticles (NPs). The biodegradable and biocompatible nanoparticles were made from chitosan (CH) and lecithin (LE) . The quality of the essential oils was verified using gas chromatography/mass spectrometry (GC/MS). The synthesis of nanoparticles included emulsification, followed by sonication, homogenization, and extrusion. Transmission electron microscopy (TEM) indicated that the nanoparticles were spherical in shape with sizes ranging from 25 to 70 nm, while dynamic light scattering (DLS) showed high negative zeta potentials. The stability of the final formula was evaluated in gastric and intes
... Show MoreThis research mainly focuses on the preparation of chitosan-alginate Nanoparticle by ionotropic gelation method using calcium chloride and sodium alginate to form nanocomposites of CH-ALg, examine their antibacterial activity against multidrug resistance (MDR) bacteria, and evaluate the stability of chitosan-alginate formula in different biological fluids, including simulated gastric fluid (SGF) and intestinal fluid (SIF). The average diameter of particles size prepared was measured by an Atomic force microscope (AFM) and it was 61.91 nm. Otherwise, the nature of functional groups present in CH-ALg nanoparticle was investigated by Fourier transforms infrared (FTIR) analysis. The stability of synthesized CH-ALg nanoparticle was
... Show MoreThis study focused on the synthesis of chitosan-alginate (CH-ALg) nanoparticles by ionotropic gelation technique using sodium alginate and calcium chloride. The particle size of the synthesized nanoparticles was confirmed by atomic force microscope (AFM) and it was 61.9 nm. While the nature of functional groups present in chitosan nanoparticles was determined by FT-IR analysis. The antibacterial activity of chitosan-alginate was tested against multidrug resistance (MDR) gram- positive (Enterococcus faecalis) and gram-negative (Proteus mirabilis) bacteria. The results showed a significant effect against MDR isolates. The nanoparticles were loaded with the antibiotic doxycycline in order to improv
... Show MoreIn the current study, synthesis and characterization of silver nanoparticles (AgNPs) before and after functionalization with ampicillin antibiotic and their application as anti-pathogenic agents towards bacteria were investigated. AgNPs were synthesized by a green method from AgNO3 solution with glucose subjected to microwave radiation. Characterization of the nanoparticles was conducted using UV-Vis spectroscopy, scanning electron microscopy (SEM), zeta potential determination and Fourier transform infrared (FTIR) spectroscopy. From SEM analysis, the typical silver nanoparticle particle size was found to be 30 nm and Zeta potential measurements gave information about particle stability. Analysis of FTIR patterns and UV-VIS spectroscopy con
... Show More