Corncob is an agricultural biomass waste that was widely investigated as an adsorbent of contaminants after transforming it into activated carbon. In this research carbonization and chemical activation processes were achieved to synthesize corncob-activated carbon (CAC). Many pretreatment steps including crushing, grinding, and drying to obtain corncob powder were performed before the carbonization step. The carbonization of corncob powder has occurred in the absence of air at a temperature of 500 °C. The chemical activation was accomplished by using HCl as an acidic activation agent. Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), X-ray diffraction (XRD), and Brunauer–Emmett–Teller (BET) facilitated the characterization of (CAC). The results showed the CAC has non-uniform morphological features with different shapes of its active sites. The prepared CAC was utilized in adsorption of sulfur in its highly complex form of dibenzothiophene (DBT). Particular adsorption parameters of contacting time, temperature, and adsorbent dose were optimized to select the best conditions. These certain conditions are then applied in the adsorption of different DBT concentrations. The maximum removal of DBT reached around 83% at optimal conditions of contacting time (30 min), temperature (60 °C), and adsorbent dose (3 g L-1). The removal efficiency was significantly increased by decreasing the initial concentration of DBT. The experimental data fitted well with the Freundlich isotherm model compared with the Langmuir one. The maximum capacity of CAC for adsorption of DBT at equilibrium was 833.3 mg g-1 at 60 °C. The findings of this research introduce the CAC as a feasible adsorbent for removal DBT from simulated liquid petroleum fuels.
Optimum perforation location selection is an important study to improve well production and hence in the reservoir development process, especially for unconventional high-pressure formations such as the formations under study. Reservoir geomechanics is one of the key factors to find optimal perforation location. This study aims to detect optimum perforation location by investigating the changes in geomechanical properties and wellbore stress for high-pressure formations and studying the difference in different stress type behaviors between normal and abnormal formations. The calculations are achieved by building one-dimensional mechanical earth model using the data of four deep abnormal wells located in Southern Iraqi oil fields. The magni
... Show MoreIn the present study, MCM-41 was synthesis as a carrier for poorly drugs soluble in water, by the sol-gel technique. Textural and chemical characterizations of MCM-41 were carried out by X-ray diffraction (XRD), Fourier transform infrared (FTIR), scanning electron microscope (SEM), and thermal gravimetric analysis (TGA). The experimental results were analyzed mesoporous carriers MCM-41. With maximum drug loading efficiency in MCM-41 determined to be 90.74%. The NYS released was prudently studied in simulated body fluid (SBF) pH 7.4 and the results proved that the release of NYS from MCM-41 was (87.79%) after 18 hr. The data of NYS released was found to be submitted a Weibull model with a correlation coefficient of (0.995). The Historical
... Show More
The best proximity point is a generalization of a fixed point that is beneficial when the contraction map is not a self-map. On other hand, best approximation theorems offer an approximate solution to the fixed point equation . It is used to solve the problem in order to come up with a good approximation. This paper's main purpose is to introduce new types of proximal contraction for nonself mappings in fuzzy normed space and then proved the best proximity point theorem for these mappings. At first, the definition of fuzzy normed space is given. Then the notions of the best proximity point and - proximal admissible in the context of fuzzy normed space are presented. The notion of α ̃–ψ ̃- proximal contractive mapping is introduced.
... Show Moren this research, several estimators concerning the estimation are introduced. These estimators are closely related to the hazard function by using one of the nonparametric methods namely the kernel function for censored data type with varying bandwidth and kernel boundary. Two types of bandwidth are used: local bandwidth and global bandwidth. Moreover, four types of boundary kernel are used namely: Rectangle, Epanechnikov, Biquadratic and Triquadratic and the proposed function was employed with all kernel functions. Two different simulation techniques are also used for two experiments to compare these estimators. In most of the cases, the results have proved that the local bandwidth is the best for all the types of the kernel boundary func
... Show MoreIn this paper, an algorithm is suggested to train a single layer feedforward neural network to function as a heteroassociative memory. This algorithm enhances the ability of the memory to recall the stored patterns when partially described noisy inputs patterns are presented. The algorithm relies on adapting the standard delta rule by introducing new terms, first order term and second order term to it. Results show that the heteroassociative neural network trained with this algorithm perfectly recalls the desired stored pattern when 1.6% and 3.2% special partially described noisy inputs patterns are presented.
this paper presents a novel method for solving nonlinear optimal conrol problems of regular type via its equivalent two points boundary value problems using the non-classical
This paper proposes two hybrid feature subset selection approaches based on the combination (union or intersection) of both supervised and unsupervised filter approaches before using a wrapper, aiming to obtain low-dimensional features with high accuracy and interpretability and low time consumption. Experiments with the proposed hybrid approaches have been conducted on seven high-dimensional feature datasets. The classifiers adopted are support vector machine (SVM), linear discriminant analysis (LDA), and K-nearest neighbour (KNN). Experimental results have demonstrated the advantages and usefulness of the proposed methods in feature subset selection in high-dimensional space in terms of the number of selected features and time spe
... Show More