Today, problems of spatial data integration have been further complicated by the rapid development in communication technologies and the increasing amount of available data sources on the World Wide Web. Thus, web-based geospatial data sources can be managed by different communities and the data themselves can vary in respect to quality, coverage, and purpose. Integrating such multiple geospatial datasets remains a challenge for geospatial data consumers. This paper concentrates on the integration of geometric and classification schemes for official data, such as Ordnance Survey (OS) national mapping data, with volunteered geographic information (VGI) data, such as the data derived from the OpenStreetMap (OSM) project. Useful descriptions of geometric accuracy assessment (positional accuracy and shape fidelity) have been obtained. Semantic similarity testing covered feature classification, in effect comparing possible categories (legend classes) and actual attributes attached to features. The model involves ‘tokenization’to search for common roots of words, and the feature classifications have been modelled as an XML schema labelled rooted tree for hierarchical analysis. The semantic similarity was measured using the WordNet:: Similarity package. Among several proposed semantic similarity methods in WordNet:: Similarity, the Lin approach has been adopted to give normalised comparison scores. The results reveal poor correspondence in the geometric and semantics integration of OS and OSM.
Objective This research investigates Breast Cancer real data for Iraqi women, these data are acquired manually from several Iraqi Hospitals of early detection for Breast Cancer. Data mining techniques are used to discover the hidden knowledge, unexpected patterns, and new rules from the dataset, which implies a large number of attributes. Methods Data mining techniques manipulate the redundant or simply irrelevant attributes to discover interesting patterns. However, the dataset is processed via Weka (The Waikato Environment for Knowledge Analysis) platform. The OneR technique is used as a machine learning classifier to evaluate the attribute worthy according to the class value. Results The evaluation is performed using
... Show MoreIn this research, a factorial experiment (4*4) was studied, applied in a completely random block design, with a size of observations, where the design of experiments is used to study the effect of transactions on experimental units and thus obtain data representing experiment observations that The difference in the application of these transactions under different environmental and experimental conditions It causes noise that affects the observation value and thus an increase in the mean square error of the experiment, and to reduce this noise, multiple wavelet reduction was used as a filter for the observations by suggesting an improved threshold that takes into account the different transformation levels based on the logarithm of the b
... Show MoreThe transmitting and receiving of data consume the most resources in Wireless Sensor Networks (WSNs). The energy supplied by the battery is the most important resource impacting WSN's lifespan in the sensor node. Therefore, because sensor nodes run from their limited battery, energy-saving is necessary. Data aggregation can be defined as a procedure applied for the elimination of redundant transmissions, and it provides fused information to the base stations, which in turn improves the energy effectiveness and increases the lifespan of energy-constrained WSNs. In this paper, a Perceptually Important Points Based Data Aggregation (PIP-DA) method for Wireless Sensor Networks is suggested to reduce redundant data before sending them to the
... Show MoreInformation hiding strategies have recently gained popularity in a variety of fields. Digital audio, video, and images are increasingly being labelled with distinct but undetectable marks that may contain a hidden copyright notice or serial number, or even directly help to prevent unauthorized duplication. This approach is extended to medical images by hiding secret information in them using the structure of a different file format. The hidden information may be related to the patient. In this paper, a method for hiding secret information in DICOM images is proposed based on Discrete Wavelet Transform (DWT). Firstly. segmented all slices of a 3D-image into a specific block size and collecting the host image depend on a generated key
... Show MoreIn this paper, integrated quantum neural network (QNN), which is a class of feedforward
neural networks (FFNN’s), is performed through emerging quantum computing (QC) with artificial neural network(ANN) classifier. It is used in data classification technique, and here iris flower data is used as a classification signals. For this purpose independent component analysis (ICA) is used as a feature extraction technique after normalization of these signals, the architecture of (QNN’s) has inherently built in fuzzy, hidden units of these networks (QNN’s) to develop quantized representations of sample information provided by the training data set in various graded levels of certainty. Experimental results presented here show that
... Show MoreIn this study, the mobile phone traces concern an ephemeral event which represents important densities of people. This research aims to study city pulse and human mobility evolution that would be arise during specific event (Armada festival), by modelling and simulating human mobility of the observed region, depending on CDRs (Call Detail Records) data. The most pivot questions of this research are: Why human mobility studied? What are the human life patterns in the observed region inside Rouen city during Armada festival? How life patterns and individuals' mobility could be extracted for this region from mobile DB (CDRs)? The radius of gyration parameter has been applied to elaborate human life patterns with regards to (work, off) days for
... Show More