A novel technique Sumudu transform Adomian decomposition method (STADM), is employed to handle some kinds of nonlinear time-fractional equations. We demonstrate that this method finds the solution without discretization or restrictive assumptions. This method is efficient, simple to implement, and produces good results. The fractional derivative is described in the Caputo sense. The solutions are obtained using STADM, and the results show that the suggested technique is valid and applicable and provides a more refined convergent series solution. The MATLAB software carried out all the computations and graphics. Moreover, a graphical representation was made for the solution of some examples. For integer and fractional order problems, solution graphs are shown. The results confirmed that the accuracy of this technique converges to the integer order of the issues.
This paper presents an analytical study for the magnetohydrodynamic (MHD) flow of a generalized Burgers’ fluid in an annular pipe. Closed from solutions for velocity is obtained by using finite Hankel transform and discrete Laplace transform of the sequential fractional derivatives. Finally, the figures are plotted to show the effects of different parameters on the velocity profile.
<p>In this paper, a simple color image compression system has been proposed using image signal decomposition. Where, the RGB image color band is converted to the less correlated YUV color model and the pixel value (magnitude) in each band is decomposed into 2-values; most and least significant. According to the importance of the most significant value (MSV) that influenced by any simply modification happened, an adaptive lossless image compression system is proposed using bit plane (BP) slicing, delta pulse code modulation (Delta PCM), adaptive quadtree (QT) partitioning followed by an adaptive shift encoder. On the other hand, a lossy compression system is introduced to handle the least significant value (LSV), it is based on
... Show MoreIn this article, the nonlinear problem of Jeffery-Hamel flow has been solved analytically and numerically by using reliable iterative and numerical methods. The approximate solutions obtained by using the Daftardar-Jafari method namely (DJM), Temimi-Ansari method namely (TAM) and Banach contraction method namely (BCM). The obtained solutions are discussed numerically, in comparison with other numerical solutions obtained from the fourth order Runge-Kutta (RK4), Euler and previous analytic methods available in literature. In addition, the convergence of the proposed methods is given based on the Banach fixed point theorem. The results reveal that the presented methods are reliable, effective and applicable to solve other nonlinear problems.
... Show MoreBecause the Coronavirus epidemic spread in Iraq, the COVID-19 epidemic of people quarantined due to infection is our application in this work. The numerical simulation methods used in this research are more suitable than other analytical and numerical methods because they solve random systems. Since the Covid-19 epidemic system has random variables coefficients, these methods are used. Suitable numerical simulation methods have been applied to solve the COVID-19 epidemic model in Iraq. The analytical results of the Variation iteration method (VIM) are executed to compare the results. One numerical method which is the Finite difference method (FD) has been used to solve the Coronavirus model and for comparison purposes. The numerical simulat
... Show MorePrecision irrigation applications are used to optimize the use of water resources, by controlling plant water requirements through using different systems according to soil moisture and plant growth periods. In precision irrigation, different rates of irrigation water are applied to different places of the land in comparison with traditional irrigation methods. Thus the cost of irrigation water is reduced. As a result of the fact that precise irrigation can be used and applied in all irrigation systems, it spreads rapidly in all irrigation systems. The purpose of the Precision Agriculture Technology System (precision irrigation) , is to apply the required level of irrigation according to agricultural inputs to the specified location , by us
... Show MoreExploring the B-Spline Transform for Estimating Lévy Process Parameters: Applications in Finance and Biomodeling Exploring the B-Spline Transform for Estimating Lévy Process Parameters: Applications in Finance and Biomodeling Letters in Biomathematics · Jul 7, 2025Letters in Biomathematics · Jul 7, 2025 Show publication This paper, presents the application of the B-spline transform as an effective and precise technique for estimating key parameters i.e., drift, volatility, and jump intensity for Lévy processes. Lévy processes are powerful tools for representing phenomena with continuous trends with abrupt changes. The proposed approach is validated through a simulated biological case study on animal migration in which movements are mo
... Show MoreThe increasing demand for energy has encouraged the development of renewable resources and environmentally benign fuel such as biodiesel. In this study, ethyl fatty esters (EFEs), a major component of biodiesel fuel, were synthesized from soybean oil using sodium ethoxide as a catalyst. By-products were glycerol and difatty acyl urea (DFAU), which has biological characteristics, as antibiotics and antifungal medications. Both EFEs and DFAU have been characterized using Fourier transform infrared (FTIR) spectroscopy, and 1H nuclear magnetic resonance (NMR) technique. The optimum conditions were studied as a function of reaction time, reactant molar ratios, catalyst percentage and the effect of organic solvents. The conversion ratio of soybea
... Show More