Background: Carpal tunnel syndrome is the most common entrapment neuropathy in humans today. For patients in whom conservative treatment fails, surgical decompression is indicated. Various surgical techniques are becoming increasingly popular. Due to the rapid postoperative recovery shown after endoscopic operations, proximal palmar mini-incision for carpal tunnel release is a comparative alternative. Methods: Ninety four patients [113 hands] with a carpal tunnel syndrome underwent carpal tunnel release through a 1-cm longitudinal incision made just over the distal flexor crease. The self- administered Boston Questionnaire was used to assess the severity of patients’ symptoms and their functional status, both before and after the surgical intervention and at their final follow-up. Patients were also asked, during the final follow-up, about the pain level of their scar tissue and functional outcome. Results: There was a significant decrease in the Boston Carpal Tunnel Questionnaire scores for the symptom severity scale and the functional status of patients in this group, post- operatively at one month and at final follow – up. The mean operative time was significantly shorter than open or endoscopic CTR. After 1 month, only 4 hands[3.5%] stated they had scar tissue pain, no recurrence, short period return to work &cost effective. Conclusions: proximal mini-incision is as effective as ECTR. Furthermore, it is also a safe and simple procedure with shorter operative time& reduced surgical cost. The absence of relapse and good clinical results make this technique suitable.
The paper presents the design of a system consisting of a solar panel with Single Input/Multiple Outputs (DC-DC) Buck Converter by using Simulink dialogue box tools in MATLAB software package for simulation the system. Maximum Power Point Tracking (MPPT) technique depending on Perturb and Observe (P&O) algorithm is used to control the output power of the converter and increase the efficiency of the system. The characteristics of the MSX-60 PV module is chosen in design of the system, whereas the electrical characteristics (P-V, I-V and P-I curves) for the module are achieved, that is affected by the solar radiation and temperature variations. The proposed design module has been found to be stable for any change in atmospheric tempera
... Show MoreWith growing global demand for hydrocarbons and decreasing conventional reserves, the gas industry is shifting its focus in the direction of unconventional reservoirs. Tight gas reservoirs have typically been deemed uneconomical due to their low permeability which is understood to be below 0.1mD, requiring advanced drilling techniques and stimulation to enhance hydrocarbons. However, the first step in determining the economic viability of the reservoir is to see how much gas is initially in place. Numerical simulation has been regarded across the industry as the most accurate form of gas estimation, however, is extremely costly and time consuming. The aim of this study is to provide a framework for a simple analytical method to esti
... Show MoreThis paper presents the Taguchi approach for optimization of hardness for shape memory alloy (Cu-Al-Ni) . The influence of powder metallurgy parameters on hardness has been investigated. Taguchi technique and ANOVA were used for analysis. Nine experimental runs based on Taguchi’s L9 orthogonal array were performed (OA),for two parameters was study (Pressure and sintering temperature) for three different levels (300 ,500 and 700) MPa ,(700 ,800 and 900)oC respectively . Main effect, signal-to-noise (S/N) ratio was study, and analysis of variance (ANOVA) using to investigate the micro-hardness characteristics of the shape memory alloy .after application the result of study shown the hei
... Show MoreGrapes and grape seeds are important samples employed for environmental medical studies . The air of this work was to identify and concentration calculation of the elements in grapes fruit and thier seeds by using X-Ray fluoresces technique (XRF) . Samples were collected from Abo Ghraib of Baghdad city ,the grape seeds were obtained from those samples . Both samples were taken under experimental procedure to obtain the sample which were ready for analysis . The samples were then submitted to experimental conditions using a radiation source and then samples were applied for counting analysis shows the elements Na , Mg , Al , Si , P , S , Cl , K , Ca , and Sr as major components of the samples. Fe , Sr , I , Ba and V were
... Show MoreIn this work, spinel ferrites (NiCoFe2O4) were prepared as thin films by dc reactive dual-magnetron co-sputtering technique. Effects of some operation parameters, such as inter-electrode distance, and preparation conditions such as mixing ratio of argon and oxygen in the gas mixture, on the structural and spectroscopic characteristics of the prepared samples were studied. For samples prepared at inter-electrode distance of 5 cm, only one functional group of OH- was observed in the FTIR spectra as all bands belonging to the metal-oxygen vibration were observed. Similarly, the XRD results showed that decreasing the pressure of oxygen in the gas mixture lead to grow more crystal planes in the samples prepare
... Show MoreThe present work involves studying the effect of electrolyte composition [@1= 0.5 wt.% NH4F / 5% H2O / 5% Glycerol (GLY)/ 90% Ethylene Glycol (EG)] and [ @2= 0.5 wt. % NH4F / 5% H2O / 95% Ethylene Glycol (EG)] on the structural and photoelectrochemical properties of titania nanotubes arrays (TNTAs). TNTAs substrates were successfully carried out via anodization technique and were carried out in 40 V for one hour in different electrolytes (@1, and @2). The properties of physicochemical of TNTAs were distinguished via an X-ray Diffractometer (XRD), Field Emission Scanning Electron Microscope (FESEM), an Energy Dispersive X-ray (EDX), and UV–visible diffuse reflectance. T
... Show MoreZinc Oxide (ZnO) thin films of different thickness were prepared
on ultrasonically cleaned corning glass substrate, by pulsed laser
deposition technique (PLD) at room temperature. Since most
application of ZnO thin film are certainly related to its optical
properties, so the optical properties of ZnO thin film in the
wavelength range (300-1100) nm were studied, it was observed that
all ZnO films have high transmittance (˃ 80 %) in the wavelength
region (400-1100) nm and it increase as the film thickness increase,
using the optical transmittance to calculate optical energy gap (Eg
opt)
show that (Eg
opt) of a direct allowed transition and its value nearly
constant (~ 3.2 eV) for all film thickness (150