The injection of Low Salinity Water (LSWI) as an Enhanced Oil Recovery (EOR) method has recently attracted a lot of attention. Extensive research has been conducted to investigate and identify the positive effects of LSWI on oil recovery. In order to demonstrate the impact of introducing low salinity water into a reservoir, simulations on the ECLIPSE 100 simulator are being done in this work. To simulate an actual reservoir, an easy static model was made. In order to replicate the effects of injecting low salinity water and normal salinity, or seawater, the reservoir is three-phase with oil, gas, and water. It has one injector and one producer. Five cases were suggested to investigate the effect of low salinity water injection with different concentrations and the period of injection. The low salinity injection period varied from twenty-five years in case one and reduced five years in each case until reached to five years in final case. Higher oil recovery factor obtained in case one with injection time twenty-five years and lower recovery factor for case five with injection time of low salinity water injection five years. Lower water concentration gives higher oil recovery for all cases where this study investigated the effect of low-salinity water flooding as slug injection. From the five cases presented, field oil recovery factor (FOE), field oil production rate (FOPR), field oil production total (FOPT), field pressure (FP), and field water cut (FWCT) were observed. Oil recovery is 56.6 percent in high salinity water flooding (HSWF), and 71.8 percent in low salinity water flooding (LSWF) for 0 percent salt concentration and 62.40 percent for 20 percent salt concentration as in case one.
This paper study two stratified quantile regression models of the marginal and the conditional varieties. We estimate the quantile functions of these models by using two nonparametric methods of smoothing spline (B-spline) and kernel regression (Nadaraya-Watson). The estimates can be obtained by solve nonparametric quantile regression problem which means minimizing the quantile regression objective functions and using the approach of varying coefficient models. The main goal is discussing the comparison between the estimators of the two nonparametric methods and adopting the best one between them
This Paper aims to know the modern approaches of determining the Qiblah and its ruling in Islamic Faqah, as well as to find out the required in the identity of the Qiblah or the eye, and the care of the advanced Jurists in this matter, and to present some of their sayings on the issue. we have followed the Descriptive analytical method of the aspects of the jurists ’difference in what is required when facing the qiblah either the eye or aspect, the approach of several demands branched out from each topic, which were answered in the theoretical framework of the research, and the research concluded with the most important results: The need to receive the eye of the qiblah for the worshiper who is close to it and it is no
... Show MoreThis study explains the effect of non-thermal (cold) plasma on wound of diabetic rats by (FE-DBD) system, 3cm probe diameter is used. The output power was ranged from (12-20) W. The effect of non-thermal plasma on wounds of a diabetic was observed with different exposure durations (20,30) sec., the plasma exposure duration decreases the sugar level in blood and the diameter of the wound. These results indicate the cold plasma can be used to enhance the insulin level (i.e., blood sugar) and wounds treatment.
Abstract: Colloidal gold nanoparticles (ringworm Palm or in the form of paper willow) have been prepared from HAuCl4 containing aqueous solution by hot chemical reduction method. The colloidal gold nanoparticles were characterized by SEM, EDX, and UV-VIS absorption spectroscopy. It was found that the variation of reduction time from boiling point affects the size of the nanoparticles and also in chemical reduction approach the size of nanoparticles can be controlled by varying the amount of variation the volume of reductant material with respect to the volume of HAuCL4.
In the present work, pulsed laser deposition (PLD) technique was applied to a pellet of Chromium Oxide (99.999% pure) with 2.5 cm diameter and 3 mm thickness at a pressure of 5 Tons using a Hydraulic piston. The films were deposited using Nd: YAG laser λ= (4664) nm at 600 mJ and 400 number of shot on a glass substrate, The thickness of the film was (107 nm). Structural and morphological analysis showed that the films started to crystallize at annealing temperature greater than 400 oC. Absorbance and transmittance spectra were recorded in the wavelength range (300-
4400) nm before and after annealing. The effects of annealing temperature on absorption coefficient, refractive index, extinction coefficient, real and imaginary parts of d
Objective(s): This study aims to evaluate the hardness of two commercially available cold cured acrylic resin material
(Vertex and PAN) when polymerized at different temperature in comparison to those polymerized by conventional
methods in air at 23C ± 5C.
Methodology: Eighty specimens, forty from cold cured acrylic (Vertex Type) and forty from cold cured acrylic (PAN
type) were prepared, flasking and packing procedure were done according to manufacturer direction and divided
according to processing as follow: 20 specimens (10 from Vertex type and 10 from PAN type) were processed in air for
two hours at 23C ± 5C under press (bench curing) as a control, and 60 specimens (30 from Vertex type and 30 from
PAN type) wer
In this work, the spectra for plasma glow produced by pulse
Nd:YAG laser (λ=532 and 1064nm) on Ag:Al alloy with same molar
ratio samples in distilled water were analyzed by studying the atomic
lines compared with aluminum and silver strong standard lines. The
effect of laser energies of the range 300 to 800 mJ on spectral lines,
produced by laser ablation, were investigated using optical
spectroscopy. The electron temperature was found to be increased
from 1.698 to 1.899 eV, while the electron density decreased from
2.247×1015 to 5.08×1014 cm-3 with increasing laser energy from 300
to 800 mJ with wavelength of 1064 nm. The values of electron
temperature using second harmonic frequency are greater than of<