Magneto-rheological (MR) valve is one of the devices generally used to control the speed of Hydraulic actuator of MR fluid. The performance of valve depends on the magnetic circuit design. Present study deals with a new design of MR valve. A mathematical model for the MR valve is developed and the simulation is carried out to evaluate the newly developed MR valve. The design of the magnetic circuit is accomplished by magnetic finite element software such as Finite Element Method Magnetic (FEMMR). The model dimensions of MR valve, material properties are taken into account. The results of analysis are presented in terms of magnetic strength H and magnetic flux density B. The simulation results based on the proposed model indicate that the efficiency of the proposed MR valve is superior to two other types of MR valves, under the same magnetic flux density. As a conclusion, the new valve design has improved the efficiency of MR valve significantly.
Pressure retarded osmosis (PRO) can be considered as one of the methods for utilizing osmotic power, which is a membrane-based technology. Mathematical modeling plays an essential part in the development and optimization of PRO energy-generating systems. In this research, a mathematical model was developed for the hollow fiber module to predict the power density and the permeate water flux theoretically. Sodium chloride solution was employed as the feed and draw solution. Different operating parameters, draw solution concentration (1 and 2 M), the flow rate of draw solution (2, 3, and 4 L/min), and applied hydraulic pressure difference (0 - 90 bar) was used to evaluate the performance of PRO process of a hollow fiber module. The eff
... Show MoreProblem of water scarcity is becoming common in many parts of the world. Thus to overcome this problem proper management of water and an efficient irrigation systems are needed. Irrigation with buried vertical ceramic pipe is known as a very effective in management of irrigation water. The two- dimensional transient flow of water from a buried vertical ceramic pipe through homogenous porous media is simulated numerically using the software HYDRUS/2D to predict empirical formulas that describe the predicted results accurately. Different values of pipe lengths and hydraulic conductivity were selected. In addition, different values of initial volumetric soil water content were assumed in this simulation a
... Show MoreComputer modeling has been used to investing the Coulomb coupling parameter ?. The effects of the structure parameter K, grain charge Z, plasma density N, temperature dust grain Td, on the Coulomb coupling parameter had been studied. It was seen that the ? was increasing with increasing Z and N, and decrease with increasing K and T. Also the critical value of ? that the phase transfer of the plasma state from liquid to solid was studied.
Abstract
In order to make an improvement associated with rotating biological contactor (RBC), a new design of biofilm reactor called as Rotating perforated disc biological contactor (RPBC) was developed in which the rotating discs are perforated. The transfer of oxygen from air to wastewater was investigated. Mass-transfer coefficient (KLa) in the liquid phase was determined by measuring the rate transfer of oxygen. A laboratory scale of (RPBC) consisted of a semicircular trough was used with a working capacity of 40 liters capacity of liquid. Synthetic wastewater was used as a liquid phase, while air was used as a gas phase.
The effects of m
... Show MoreThe aim of this research is to assess the validity of Detailed Micro-Modeling (DMM) as a numerical model for masonry analysis. To achieve this aim, a set of load-displacement curves obtained based on both numerical simulation and experimental results of clay masonry prisms loaded by a vertical load. The finite element method was implemented in DMM for analysis of the experimental clay masonry prism. The finite element software ABAQUS with implicit solver was used to model and analyze the clay masonry prism subjected to a vertical load. The load-displacement relationship of numerical model was found in good agreement with those drawn from experimental results. Evidence shows that load-displacement curvefound from the finite element m
... Show MoreUnder-reamed piles defined by having one or more bulbs have the potential for sizeable major sides over conventional straight-sided piles, most of the studies on under-reamed piles have been conducted on the experimental side, while theoretical studies, such as the finite element method, have been mainly confined to conventional straight-sided piles. On the other hand, although several laboratory and experimental studies have been conducted to study the behavior of under-reamed piles, few numerical studies have been carried out to simulate the piles' performance. In addition, there is no research to compare and evaluate the behavior of these piles under dynamic loading. Therefore, this study aimed to numerically investigate bearing capaci
... Show MoreThe aim of this paper is to estimate the concentrations of some heavy metals in Mohammed AL-Qassim Highway in Baghdad city for different distances by using the polynomial interpolation method for functions passing from the data, which is proposed by using the MATLAB software. The sample soil in this paper was taken from the surface layer (0-25 cm depth) at the two sides of the road with four distances (1.5, 10, 25 and 60 m) in each side of the road. Using this method, we can find the concentrations of heavy metals in the soil at any depth and time without using the laboratory, so this method reduces the time, effort and costs of conducting laboratory analyzes.
Despite the importance of sustainable development and its dimensions in developing performance and supporting competitive advantage in economic units, there is a gap and lack of coordination between Combined Assurance providers (management, internal audit, external audit) to report on sustainable development, and the research aims to propose a model for the Combined Assurance report to achieve development sustainable development in the Iraqi economic units, especially the Baghdad Municipality, enables assurance providers to coordinate efforts that lead to the achievement of Combined Assurance, The research found the proposed model for the Combined Assurance report in achieving sustainable development in the Iraqi economic units, es
... Show MoreA low speed open circuit wind tunnel has been designed, manufactured and constructed at the
Mechanical Engineering Department at Baghdad University - College of Engineering. The work is one of
the pioneer projects adapted by the R & D Office at the Iraqi MOHESR. The present paper describes the
first part of the work; that is the design calculations, simulation and construction. It will be followed by a
second part that describes testing and calibration of the tunnel. The proposed wind tunnel has a test
section with cross sectional area of (0.7 x 0.7 m2) and length of (1.5 m). The maximum speed is about (70
m/s) with empty test section. The contraction ratio is (8.16). Three screens are used to minimize flow
distu