In this paper, we characterize the percolation condition for a continuum secondary cognitive radio network under the SINR model. We show that the well-established condition for continuum percolation does not hold true in the SINR regime. Thus, we find the condition under which a cognitive radio network percolates. We argue that due to the SINR requirements of the secondaries along with the interference tolerance of the primaries, not all the deployed secondary nodes necessarily contribute towards the percolation process- even though they might participate in the communication process. We model the invisibility of such nodes using the concept of Poisson thinning, both in the presence and absence of primaries. Invisibility occurs due to nodes that i) cannot decode transmissions except from their nearest neighbors, ii) are always interfered, and iii) belong to isolated components. We find the thinning probability in terms of primary and secondary densities, communication radii, and interference cancellation coefficient. Further, we show how the effective coverage radius shrinks which also adds to the thinning. Theoretical findings are validated through simulations.
Abstract
Balance is a psychological need and a requirement of importance as the individual seeks to maintain it. The research problem is summarized in the question: do students in the kindergarten department have a cognitive balance? The research aims to identify the cognitive balance of students in the kindergarten department and to identify if there are differences among students of the four stages according to the cognitive balance. The research community was limited to the students in the kindergarten department at the University of Baghdad / College of Education for Women and Al-Mustansiriya University / College of Basic Education and Iraqi University / College of Education for Women for the academic y
... Show MoreThe present study cognitive aims to investigate the negation phenomenon in American political discourse under Critical Discourse Analysis (CDA) principles. The research sample includes two speeches given by Clinton and Trump in their election campaigns in 2016. Since the nature of the study follows the social-cognitive approach, the researcher adopted two models of analysis to achieve the study’s objectives: First, the theoretical framework of MST (developed by Fauconnier (1994), Fauconnier and Sweetser (1996) to examine meaning construction resulting from building different levels of negative mental spaces by two different genders the selected speeches. Second, pragmatic model to examine the role of gender from the functional per
... Show MoreThis study was conducted to determine the relationship between test anxiety and cognitive representation among university students. To this end, 152 student (male, female) were chosen randomly from scientific and social departments to fill out the questionnaires of test anxiety and cognitive representation. The researcher utilized Independent Samples T-Test, Pearson product-moment correlation coefficient, Cronbach's alpha and T-Test in his study. The result revealed that there were negative and a weak correlation between test anxiety and cognitive representation among university students.
This paper adapted the neural network for the estimating of the direction of arrival (DOA). It uses an unsupervised adaptive neural network with GHA algorithm to extract the principal components that in turn, are used by Capon method to estimate the DOA, where by the PCA neural network we take signal subspace only and use it in Capon (i.e. we will ignore the noise subspace, and take the signal subspace only).
This study aims to analyze the flow migration of individuals between Iraqi governorates using real anonymized data from Korek Telecom company in Iraq. The purpose of this analysis is to understand the connection structure and the attractiveness of these governorates through examining the flow migration and population densities. Hence, they are classified based on the human migration at a particular period. The mobile phone data of type Call Detailed Records (CDRs) have been observed, which fall in a 6-month period during COVID-19 in the year 2020-2021. So, according to the CDRs nature, the well-known spatiotemporal algorithms: the radiation model and the gravity model were applied to analyze these data, and they are turned out to be comp
... Show MoreDiscriminant between groups is one of the common procedures because of its ability to analyze many practical phenomena, and there are several methods can be used for this purpose, such as linear and quadratic discriminant functions. recently, neural networks is used as a tool to distinguish between groups.
In this paper the simulation is used to compare neural networks and classical method for classify observations to group that is belong to, in case of some variables that don’t follow the normal distribution. we use the proportion of number of misclassification observations to the all observations as a criterion of comparison.