Fiber‐reinforced elastic laminated composites are extensively used in several domains owing to their high specific stiffness and strength and low specific density. Several studies were performed to ascertain the factors that affect the composite plates’ dynamic properties. This study aims to derive a mathematical model for the dynamic response of the processed composite material in the form of an annular circular shape made of polyester/E‐glass composite. The mathematical model was developed based on modified classical annular circular plate theory under dynamic loading, and all its formulas were solved using MATLAB 2023. The mathematical model was also verified with real experimental work involving the vibration test of the fabricated composite plate. The composite plate was processed by reinforcing the polyester matrix with E‐glass fibers with a 50% volume fraction each by using the handy lay‐up method. After fabrication, the composite plate was tested with a universal vibration tester, where the plate was impacted and released to free vibration, and the deflection was measured experimentally to compare it with the theoretical value calculated from the derived model. The plate was tested under two boundary conditions, namely, simply and built‐in supported. The findings show good agreement between theoretical and experimental plate deflections at different angles, particularly at built‐in supported boundary conditions. Also, a higher natural frequency was recorded at this condition compared to others, and this may be ascribed to the higher shear stresses involved due to large moments at the ends along with supporting. Meanwhile, the real experimental spectrum of the built‐in condition was higher than others, as the sig view curve revealed.
This paper deals with, Bayesian estimation of the parameters of Gamma distribution under Generalized Weighted loss function, based on Gamma and Exponential priors for the shape and scale parameters, respectively. Moment, Maximum likelihood estimators and Lindley’s approximation have been used effectively in Bayesian estimation. Based on Monte Carlo simulation method, those estimators are compared in terms of the mean squared errors (MSE’s).
The efforts embedded in this paper have been devoted to designing, preparing, and testing warm mix asphalt (WMA) mixtures and comparing their behavior against traditional hot mix asphalt mixtures. For WMA preparation, the Sasobit wax additive has been added to a 40/50 asphalt binder with a concentration of 3%. An experimental evaluation has been performed by conducting the Marshall together with volumetric properties, indirect tensile strength, and wheel tracking tests to acquire the tensile strength ratio (TSR), retained stability index (RSI), and rut depth. It was found that the gained benefit of reduction in mixing and compaction temperatures was reversely associated with a noticeable decline in Marshall properties and moisture s
... Show MoreThe sunrise, sunset, and day length times for Baghdad (Latitude =33.34º N, Longitude =44.43º E) were calculated with high accuracy on a daily basis during 2019. The results showed that the earliest time of sunrise in Baghdad was at 4h: 53m from 5 Jun. to 20 Jun while the latest was at 7h: 07m from 5 Jan. to 11 Jan. The earliest time of sunset in Baghdad was at16 h: 55m from 30 Nov. to 10 Dec. whereas the latest was at 19h: 16m from 25 Jun. to 5 Jul. The minimum period of day length in Baghdad was 9h: 57m) in 17 Dec. whereas the maximum period was 14h: 22m) in 20 Jun. Day length was calculated and compared among regions of different latitudes(0, 15, 30, 45 and 60 north).
This contribution investigates structural, electronic, and optical properties of cubic barium titanate (BaTiO3) perovskites using first-principles calculations of density functional theory (DFT). Generalized gradient approximations (GGA) alongside with PW91 functional have been implemented for the exchange–correlation potential. The obtained results display that BaTiO3 exhibits a band gap of 3.21 eV which agrees well with the previously experimental and theoretical literature. Interestingly, our results explore that when replacing Pd atom with Ba and Ti atoms at 0.125 content a clear decrease in the electronic band gap of 1.052 and 1.090 eV located within the visible range of electromagnetic wavelengths (EMW). Optical parameters such as a
... Show MoreWellbore instability problems cause nonproductive time, especially during drilling operations in the shale formations. These problems include stuck pipe, caving, lost circulation, and the tight hole, requiring more time to treat and therefore additional costs. The extensive hole collapse problem is considered one of the main challenges experienced when drilling in the Zubair shale formation. In turn, it is caused by nonproductive time and increasing well drilling expenditure. In this study, geomechanical modeling was used to determine a suitable mud weight window to overpass these problems and improve drilling performance for well development. Three failure criteria, including Mohr–Coulomb, modifie
The cost‐effective dual functions zeolite‐carbon composite (DFZCC) was prepared using an eco‐friendly substrate prepared from bio‐waste and an organic adhesive at intermediate conditions. The green synthesis method used in this study ensures that chemically harmless compounds are used to obtain a homogeneous distribution of zeolite over porous carbon. The greenly prepared dual‐function composite was extensively characterized using Fourier transform infrared, X‐ray diffraction, thermogravimetric analysis, N2 adsorption/desorption isotherms, field emission scanning electron microscope, dispersive analysis by X‐ray, and point of zero charges. DFZCC had a surface area o