Face Recognition Systems (FRS) are increasingly targeted by morphing attacks, where facial features of multiple individuals are blended into a synthetic image to deceive biometric verification. This paper proposes an enhanced Siamese Neural Network (SNN)-based system for robust morph detection. The methodology involves four stages. First, a dataset of real and morphed images is generated using StyleGAN, producing high-quality facial images. Second, facial regions are extracted using Faster Region-based Convolutional Neural Networks (R-CNN) to isolate relevant features and eliminate background noise. Third, a Local Binary Pattern-Convolutional Neural Network (LBP-CNN) is used to build a baseline FRS and assess its susceptibility to d
... Show MoreIn this research the Empirical Bayes method is used to Estimate the affiliation parameter in the clinical trials and then we compare this with the Moment Estimates for this parameter using Monte Carlo stimulation , we assumed that the distribution of the observation is binomial distribution while the distribution with the unknown random parameters is beta distribution ,finally we conclude that the Empirical bayes method for the random affiliation parameter is efficient using Mean Squares Error (MSE) and for different Sample size .
Abstract: This study aims to investigate the effects of solvents of various polarities on the electronic absorption and fluorescence spectra of RhB and Rh6G. The singlet‐state excited dipole moments (me) and ground state dipole moments (mg) were estimated from the equations of Bakshiev -Kawski and Chamma‐ Viallet using the variation of Stokes shift along with the solvent’s dielectric constant (e) and refractive indexes (n). The observed singlet‐state excited dipole moments were found to be larger than the ground‐state ones. Moreover, the obtained fluorescence quantum yield values were influenced by the environment of the fluorescing molecule. Consequently, the concentration of the dye solution, excited singlet state absorption and
... Show MoreIn this work, the nuclear electromagnetic moments for the ground and low-lying excited states for sd shell nuclei have been calculated, resulting in a revised database with 56 magnetic dipole moments and 41 electric quadrupole moments. The shell model calculations are performed for each sd isotope chain, considering the sensitivity of changing the sd two-body effective interactions USDA, USDE, CWH and HBMUSD in the calculation of the one-body transition density matrix elements. The calculations incorporate the single-particle wave functions of the Skyrme interaction to generate a one-body potential in Hartree–Fock theory to calculate the single-particle matrix elements. For most sd shell nuclei, the experimental data are well rep
... Show MoreNeighShrink is an efficient image denoising algorithm based on the discrete wavelet
transform (DWT). Its disadvantage is to use a suboptimal universal threshold and identical
neighbouring window size in all wavelet subbands. Dengwen and Wengang proposed an
improved method, which can determine an optimal threshold and neighbouring window size
for every subband by the Stein’s unbiased risk estimate (SURE). Its denoising performance is
considerably superior to NeighShrink and also outperforms SURE-LET, which is an up-todate
denoising algorithm based on the SURE. In this paper different wavelet transform
families are used with this improved method, the results show that Haar wavelet has the
lowest performance among
In this paper, we introduce a DCT based steganographic method for gray scale images. The embedding approach is designed to reach efficient tradeoff among the three conflicting goals; maximizing the amount of hidden message, minimizing distortion between the cover image and stego-image,and maximizing the robustness of embedding. The main idea of the method is to create a safe embedding area in the middle and high frequency region of the DCT domain using a magnitude modulation technique. The magnitude modulation is applied using uniform quantization with magnitude Adder/Subtractor modules. The conducted test results indicated that the proposed method satisfy high capacity, high preservation of perceptual and statistical properties of the steg
... Show MoreImage segmentation can be defined as a cutting or segmenting process of the digital image into many useful points which are called segmentation, that includes image elements contribute with certain attributes different form Pixel that constitute other parts. Two phases were followed in image processing by the researcher in this paper. At the beginning, pre-processing image on images was made before the segmentation process through statistical confidence intervals that can be used for estimate of unknown remarks suggested by Acho & Buenestado in 2018. Then, the second phase includes image segmentation process by using "Bernsen's Thresholding Technique" in the first phase. The researcher drew a conclusion that in case of utilizing
... Show More