Sol-gel derived ITO-based bi-layer and tri-layer thin film coatings for organic solar cells applications
...Show More Authors
The new organic reagent 2-[Benzo thiazolyl azo]-4,5-diphenyl imidazole was prepared and used as complexing agent for separation and spectrophotometric determination of Cu2+ ion in some samples include plants, soil, water and human blood serum. Initially determined all factors effect on extraction method and the results show optimum pH was (pHex=9), optimum concentration was 40?g/5mLCu2+ and optimum shaking time was (15min.), as well stoichiometry study appears the complex structure was 1:1 Cu2+: BTADPI. Interferences effect of cations were studied. Synergism effect shows MIBK gave increasing in distribution ratio (D). Organic solvent effect appears there is no any linear relation between dielectric constant for organic solvent used and dis
... Show MoreThe study effect Graphene on optical and electrical properties of glass prepared on glass substrates using sol–gel dip-coating technique. The deposited film of about (60-100±5%) nm thick. Optical and electrical properties of the films were studied under different preparation conditions, such as graphene concentration of 2, 4, 6 and 8 wt%. The results show that the optical band gap for glass-graphene films decreasing after adding the graphene. Calculated optical constants, such as transmittance, extinction coefficient are changing after adding graphene. The structural morphology and composition of elements for the samples have been demonstrated using SEM and EDX. The electrical properties of films include DC electrical conductivity; we
... Show MoreIn this research, the electrical conductivity and Hall effect measurements have been investigated on the CuInTe2 (CIT) thin films prepared by thermal evaporation technique on glass substrate at room temperature as a function of annealing temperature (R.T,473,673)K for different thicknesses (300 and 600) nm. The samples were annealed for one hour. The electrical conductivity analysis results demonstrated that all samples prepared have two types of transport mechanisms of free carriers with two values of activation energy (Ea1, Ea2), and the electrical conductivity increases with the increase of annealing temperature whereas it showed opposite trend with thickness , where the electrical conductivity would d
... Show MoreLead selenide PbSe thin films of different thicknesses (300, 500, and 700 nm) were deposited under vacuum using thermal evaporation method on glass substrates. X-ray diffraction measurements showed that increasing of thickness lead to well crystallize the prepared samples, such that the crystallite size increases while the dislocation density decreases with thickness increasing. A.C conductivity, dielectric constants, and loss tangent are studied as function to thickness, frequency (10kHz-10MHz) and temperatures (293K-493K). The conductivity measurements confirm confirmed that hopping is the mechanism responsible for the conduction process. Increasing of thickness decreases the thermal activation energy estimated from Arhinus equation is
... Show MoreThe influence of silver doped n-type polycrystalline CdTe film with thickness of 200 nm and rate deposition of 0.3 nm.s -1 prepared under high vacuum using thermal co-evaporation technique on its some structural and electrical properties was reported. The X- ray analysis showed that all samples are polycrystalline and have the cubic zinc blend structure with preferential orientation in the [111] direction. Films doping with impurity percentages (2, 3, and 4) %Ag lead to a significant increase in the carrier concentration, so it is found to change from 23.493 108 cm -3 to 59.297 108 cm -3 for pure and doped CdTe thin films with 4%Ag respectively. But films doping with impurity percentages above lead to a significant decrease in the electrica
... Show MoreIndium doped CdTe polycrystalline films of thickness equals to 300nm were grown on corning glass substrates at temperature equals to 423K by thermal co-evaporation technique. The structural and electrical properties for these films were studied as a function of heat treatment (323,373,423)K. The x-ray analysis showed that all samples are polycrystalline and have the cubic zincblende structure with preferential orientation in the [111] direction, no diffraction peaks corresponding to metallic Cd, Te or other compounds were observed. It was found that the electrical resistivity drops and the carrier concentration increases when the CdTe film doped with 1.5% indium and treated at different annealing temperatures.
In this work the structural, electrical and optical Properties of CuO semiconductor films had been studied, which prepared at three thickness (100, 200 and 500 nm) by spray pyrolysis method at 573K substrate temperatures on glass substrates from 0.2M CuCl2•2H2O dissolved in alcohol. Structural Properties shows that the films have only a polycrystalline CuO phase with preferential orientation in the (111) direction, the dc conductivity shows that all films have two activation energies, Ea1 (0.45-0.66 eV) and Ea2 (0.055-.0185 eV), CuO films have CBH (Correlated Barrier Hopping) mechanism for ac-conductivity. The energy gap between (1.5-1.85 eV).
In this work, CdO:In/Si heterojunction solar cell has been made by vacuum evaporation of cadmium oxide doped with 1% of indium thin film onto glass and silicon substrates with rate deposition (3.9A/sec) and thickness(≈250nm). XRD was investigated, the transmission was determined in range (300-1100)nm and the direct band gap energy is 2.43 eV, I-V characterization of the cell under illumination was investigated , the cell shows an open circuit voltage (Voc) of 0.6 Volt, a short circuit current density (Jsc) of 12.8 mA/cm2, a fill factor (F.F) of 0.66, and a conversion efficiency (η) of 5.2%.