Charge extraction layers play a crucial role in developing the performance of the inverted organic solar cells. Using a transparent metal oxide with appropriate work function to the photoactive layer can significantly decrease interface recombination and enhance charge transport mechanism. Therefore, electron selective films that consist of aluminium-doped titanium dioxide (TiO2:Al) with different concentrations of Al (0.4, 0.8, and 1.2)wt % were prepared using sol-gel technique. The inverted organic solar cells PCPDTBT: PCBM with Al doped TiO2 as electron extraction layer were fabricated. It is well known that Al doping concentration potentially affects the physical characteristics of the TiO2 by control
... Show MoreSol-gel derived CuCo-oxide coatings as solar selective surfaces, synthesized onto aluminium substrates at various annealing temperatures, are analysed by correlating their structural, chemical bonding states, and surface morphological topographies. As the annealing progressed, all the coatings displayed a Cu0.56Co2.44O4 (ICSD 78-2175) phase with preferential orientation along (400) reflection plane. Rietveld refinement of X-ray diffraction (XRD) data indicate that residual stress and microstrains developed around the coating surfaces are reduced resulting in mechanically stable thin films. Enhancement of the crystallite size and preferred orientation of the surface were confirmed via XRD, field emission scanning electron microscopy (FESEM),
... Show MoreArrested precipitation methode used to synthesize CuInSe2 (CIS) nanocrystals were added to a hot solvent with organic capping ligands to control nanocrystal formation and growth. CIS thin films deposited onto Soda-Lima Glass (SLG) substrate by spray-coat, then selenized in Ar-atmosphere to form CIS thin films. PVs were made with power conversion efficiencies of 0.631% as-deposited and 0.846% after selenization, for Mo coated, under AM 1.5 illuminations. (XRD) and (EDX) it is evident that CIS have chalcopyrite structure as the major phase with a preferred orientation along (112) direction and Cu:In:Se nanocrystals is nearly 1:1:2 atomic ratio.
The structure, optical, and electrical properties of SnSe and its application as photovoltaic device has been reported widely. The reasons for interest in SnSe due to the magnificent optoelectronic properties with other encouraging properties. The most applications that in this area are PV devices and batteries. In this study tin selenide structure, optical properties and surface morphology were investigated and studies. Thin-film of SnSe were deposit on p-Si substrates to establish a junction as solar cells. Different annealing temperatures (as prepared, 125,200, 275) °C effects on SnSe thin films were investigated. The structure properties of SnSe was studied through X-ray diffraction, and the results appears the increasing of the peaks
... Show MoreThe CuInSe2 (CIS) nanocrystals are synthesized by arrested precipitation from molecular precursors are added to a hot solvent with organic cap- ping ligands to control nanocrystal formation and growth. CIS thin films deposited onto glass substrate by spray - coating, then selenized in Ar- atmosphere to form CIS thin films. PVs were made with power conversion efficiencies of 0.631% as -deposited and 0.846% after selenization, for Mo coated, under AM 1.5 illumination. X-ray diffraction (XRD) and energy dispersive spectroscopy (EDS) analysis it is evident that CIS have the chalcopyrite structure as the major phase with a preferred orientation along (112) direction and the atomic ratio of Cu : In : Se in the nanocrystals is nearly 1 : 1 : 2