This research aimed to predict the permanent deformation (rutting) in conventional and rubberized asphalt mixes under repeated load conditions using the Finite Element Method (FEM). A three-dimensional (3D) model was developed to simulate the Wheel Track Testing (WTT) loading. The study was conducted using the Abaqus/Standard finite element software. The pavement slab was simulated using a nonlinear creep (time-hardening) model at 40°C. The responses of the viscoplastic model under the influence of the trapezoidal amplitude of moving wheel loadings were determined for different speeds and numbers of cycles. The results indicated that a wheel speed increase from 0.5Km/h to 1.0Km/h decreased the rut depth by about 22% and 24% in conventional and rubberized asphalt mixes, respectively. Moreover, increasing the number of cycles from 7,500 (15,000 passes) to 15,000 (30,000 passes) under constant speed increased the rut depth by about 25% and 30% in conventional and rubberized asphalt mixes, respectively. Furthermore, the addition of Crumb Rubber (CR) to the asphalt reduced its rut depth by 55% compared to conventional asphalt.
Piled raft is commonly used as foundation for high rise buildings. The design concept of piled raft foundation is to minimize the number of piles, and to utilize the entire bearing capacity. High axial stresses are therefore, concentrated at the region of connection between the piles and raft. Recently, an alternative technique is proposed to disconnect the piles from the raft in a so called unconnected piled raft (UCPR) foundation, in which a compacted soil layer (cushion) beneath the raft, is usually introduced. The piles of the new system are considered as reinforcement members for the subsoil rather than as structural members. In the current study, the behavior of unconnected piled rafts systems has been studie
... Show MoreIn this study, the ability of pistachio shells, as an unconventional adsorbent, to recover thallium cations from contaminated aqueous solutions was investigated. To achieve the objective of the study, practical experiments were conducted using a batch-mode adsorption unit under various operating conditions. The results obtained showed that the pistachio shells have the ability to remove thallium cations with a high efficiency exceeding 86% at room temperature. The results indicated that the maximum treatment efficiency was achieved at values of 7, 350 rpm, 86 ppm, 5 g, 150 min of pH, agitation speed, initial concentration of thallium, dosage of pistachio shell used, and contact time, respectively. Morphological results confirmed tha
... Show MoreWellbore instability problems cause nonproductive time, especially during drilling operations in the shale formations. These problems include stuck pipe, caving, lost circulation, and the tight hole, requiring more time to treat and therefore additional costs. The extensive hole collapse problem is considered one of the main challenges experienced when drilling in the Zubair shale formation. In turn, it is caused by nonproductive time and increasing well drilling expenditure. In this study, geomechanical modeling was used to determine a suitable mud weight window to overpass these problems and improve drilling performance for well development. Three failure criteria, including Mohr–Coulomb, modifie
There is no access to basic sanitation for half the world's population, leading to Socioeconomic issues, such as scarcity of drinking water and the spread of diseases. In this way, it is of vital importance to develop water management technologies relevant to the target population. In addition, in the separation form of water treatment, the compound often used as a coagulant in water treatment is aluminum sulfate, which provides good results for raw water turbidity and color removal. Studies show, however, that its deposition in the human body, even Alzheimer's disease, can cause serious harm to health and disease development. The study aims to improve the coagulation/flocculation stage related to the amount of flakes, i
... Show MoreIn this paper, isobutane (R-600a) is used as a suitable substitute for (R-134a) when changing the length of capillary tube. And the experimental data on capillary tube are obtained under different conditions such as (subcooling and ambient temperatures) on domestic refrigerator (9ft3 size), this data shows that (R-600a) a suitable substitute for (R134a) .The test presented a model for a steady state, two-phase flow in capillary tube for vapour compression system .The numerical model depends on conservation equations (mass, energy and momentum) as wall as the equation of state for refrigerant. The solution methodology was implemented by using finite difference techniques. The system results indicate that it is possible to change the refri
... Show MoreThis work introduces a new electrode geometry for making holes with high aspect ratios on AISI 304 using an electrical discharge drilling (EDD) process. In addition to commercially available cylindrical hollow electrodes, an elliptical electrode geometry has been designed, manufactured, and implemented. The principal aim was to improve the removal of debris formed during the erosion process that adversely affects the aspect ratio, dimensional accuracy, and surface integrity. The results were compared and discussed to evaluate the effectiveness of electrode geometry on the machining performance of EDD process with respect to the material removal rate (MRR,) the electrode wear rate (EWR), and the tool wear ratio (TWR). Dimensional features an
... Show MoreThis paper is dealing with non-polynomial spline functions "generalized spline" to find the approximate solution of linear Volterra integro-differential equations of the second kind and extension of this work to solve system of linear Volterra integro-differential equations. The performance of generalized spline functions are illustrated in test examples
This paper is concerned with the numerical solutions of the vorticity transport equation (VTE) in two-dimensional space with homogenous Dirichlet boundary conditions. Namely, for this problem, the Crank-Nicolson finite difference equation is derived. In addition, the consistency and stability of the Crank-Nicolson method are studied. Moreover, a numerical experiment is considered to study the convergence of the Crank-Nicolson scheme and to visualize the discrete graphs for the vorticity and stream functions. The analytical result shows that the proposed scheme is consistent, whereas the numerical results show that the solutions are stable with small space-steps and at any time levels.
Volterra – Fredholm integral equations (VFIEs) have a massive interest from researchers recently. The current study suggests a collocation method for the mixed Volterra - Fredholm integral equations (MVFIEs)."A point interpolation collocation method is considered by combining the radial and polynomial basis functions using collocation points". The main purpose of the radial and polynomial basis functions is to overcome the singularity that could associate with the collocation methods. The obtained interpolation function passes through all Scattered Point in a domain and therefore, the Delta function property is the shape of the functions. The exact solution of selective solutions was compared with the results obtained
... Show MoreIn this study, a new technique is considered for solving linear fractional Volterra-Fredholm integro-differential equations (LFVFIDE's) with fractional derivative qualified in the Caputo sense. The method is established in three types of Lagrange polynomials (LP’s), Original Lagrange polynomial (OLP), Barycentric Lagrange polynomial (BLP), and Modified Lagrange polynomial (MLP). General Algorithm is suggested and examples are included to get the best effectiveness, and implementation of these types. Also, as special case fractional differential equation is taken to evaluate the validity of the proposed method. Finally, a comparison between the proposed method and other methods are taken to present the effectiveness of the proposal meth
... Show More