High-power density supercapacitors and high-energy–density batteries have gotten a lot of interest since they are critical for the power supply of future electric cars, portable electronic gadgets, unmanned aircraft, and so on. The electrode materials used in supercapacitors and batteries have a significant impact on the practical energy and power density. Metal–organic frameworks (MOFs) have the outstanding electrochemical ability because of their ultrahigh porous structure, ease of functionalization, and great specific surface area. These features make it an intriguing electrode material with good electrochemical efficiency for high-storage batteries. Thus, this review summarizes current developments in MOFs-based materials as an electrode for electric vehicle battery applications. We introduce several kinds of batteries and discuss their advantages and disadvantages. Also, current developments in MOFs composite, the use of MOF-derived materials as electrode materials in electric car batteries, and MOFs architectures and their features were highlighted. Lastly, the future of MOF-related materials for electric vehicle batteries was discussed and provide some guidance on where this field is headed.
Fabrication of a photodetector consists of the conjugated polymer "MEH-PPV"- poly (2-methoxy-5-(2'-ethylhexyloxy)-1,4-phenlenevinylene) and MEH-PPV:MWCNT nanocomposite thin film. The volume ratio investigated was 0.75:0.25. MEH-PPV was dissolved in chloroform solvent and doped with MWCNTs. The spin coating method was used to achieve a facile and low cost photodetector. The absorption spectrum decreases by adding the CNTs. The PL spectrum detected recombination curve results by doping the polymer with CNTs, and AFM measurement showed an increase of roughness average from (0.168 to 2.43nm) of "MEH-PPV" and "MEH-PPV:CNTs", respectively. The doping ratio 0.25, which has a higher photoresponsivity, was evaluated at 1.70 A/W and 2.14 A/W of th
... Show MoreAcidity constants at 30co and 0.125 ionic strength have been determined for the Nitrogous bases of nucleic acid; cytocine, uarcil and thymine, and found to be 3.55 x10-19 , 1.44 x10 -19 and 7.24 x10 -20 respectively. Stability constants of these bases with Thorium and uranyl ions have been determined. Results showed that metal ions Thorium and uranyl ions behave as hard acids and the nitrogenum bases behave as Hard bases according to Pearson's definition .Hardness – softness parameters for these ligands were calculated ,stability constants of complexes with metal ions could be arranged as follows :- Cytosine > Uracil > Thymine .
In this work, the copper metal was treated using Nd:YAG laser with energy 1Joul to enhance corrosion resistance and improve surface properties. The copper metal has many applications in industry as well as water, oil and gas pipes. The same conditions, (laser power density, scan speed, distance between paths, medium gas-air) were applied in the laser surface treatment, After laser treatment, the samples microstructures were investigated using optical microscope (OM) to examine micro structural changes due to laser irradiation. Specimen surfaces were investigated using atomic force microscopy (AFM), X-ray diffraction (XRD), macro hardness, and corrosion test before and after laser treatment to
... Show MoreIron–phthalocyanine (FePc) organic photoconductive detector was fabricated using pulsed laser deposition (PLD) technique to work in ultraviolet (UV) and visible regions. The organic semiconductor material (iron phthalocyanine) was deposited on n-type silicon wafer (Si) substrates at different thicknesses (100, 200 and 300) nm. FePc organic photoconductive detector has been improved by two methods: the first is to manufacture the detector on PSi substrates, and the second is by coating the detector with polyamide–nylon polymer to enhance the photoconductivity of the FePc detector. The current–voltage (I–V) characteristics, responsivity, photocurrent gain, response time and the quantum efficiency of the fabricated photoconduc
... Show MoreThis work was conducted to study the extraction of eucalyptus oil from natural plants (Eucalyptus camadulensis leaves) by organic solvents. the effects of the main operating parameters were studied; type of solvent (n-hexane and ethanol), time to reach equilibrium, the temperature (45°C to 65°C) for n-hexane and (45°C to 75°C) for ethanol, solvent to solid ratio (5:1 to 8:1 (v/w)), agitation speed (0 to 900 rpm) and the particle size (0.5 to 2.5 cm) of fresh leaves to find the best processing conditions for the achieving maximum oil yield. The concentration of eucalyptus oil in solvent was measured by using UV-spectrophotometer. The results (for n-hexane) showed that the agitation speed of 900 rpm, temperature 65°C with solvent to soli
... Show MoreChlorinated volatile organic compounds (CVOCs) are toxic chemical entities emitted invariably from stationary thermal operations when a trace of chlorine is present. Replacing the high-temperature destruction operations of these compounds with catalytic oxidation has led to the formulation of various potent metal oxides catalysts; among them are ceria-based materials. Guided by recent experimental measurements, this study theoretically investigates the initial steps operating in the interactions of ceria surface CeO2(111) with three CVOC model compounds, namely chloroethene (CE), chloroethane (CA) and chlorobenzene (CB). We find that, the CeO2(111) surface mediates fission of the carbon–chlorine bonds in the CE, CA and CB molecules via mo
... Show MoreA Field experiment was conducted in Horticulture and Landscape Department, College of Agricultural Engineering Sciences, University of Baghdad, Al-Jadriah during fall 2019-2020 to study changes in the growth and yield of broccoli grown in the alternative solution ABEER, affected by gas enrichment and spraying with coconut water and moringa aqueous extract under the hydroponic cultivation system. Nested design with three replications adopted in the experiment, each of them included in main plot the first factor, which is gas enrichment (O2 and O3), Then levels of second factor were randomly distributed within each replicate, which included spra
This research sheds light on the use of metal in the manufacture of jewelry, which is represented by ornamental tools in the period between the third and second millennium BC, in addition to the most important molds used in their manufacture. Man has been interested in metals since early ages, and was able to make tools that he uses in his daily life, especially jewelry. And the Syrian people got acquainted with the types of minerals, their characteristics, and how to deal with them. Minerals played an effective and prominent role in the economy of ancient Syria. Trade with those countries and secure their roads.
The present work aimed to study the efficiency of thermal osmosis process for recovery of water from organic wastewater solution and study the factors affecting the performance of the osmosis cell. The driving force in the thermo osmosis cell is provided by a difference in temperature across the membrane sides between the draw and feed solution. In this research used a cellulose triacetate (CTA), as flat sheet membranes for treatment of organic wastewater under orientation membrane of active layer facing feed solution (FS) and draw solution (DS) is placed against the support layer. The organic materials were phenol, toluene, xylene and BTX (benzene, toluene, and xylene) used as feed solution. The osmotic agent in draw solution was
... Show MoreIn this paper, a simulation of the electrical performance for Pentacene-based top-contact bottom-gate (TCBG) Organic Field-Effect Transistors (OFET) model with Polymethyl methacrylate (PMMA) and silicon nitride (Si3N4) as gate dielectrics was studied. The effects of gate dielectrics thickness on the device performance were investigated. The thickness of the two gate dielectric materials was in the range of 100-200nm to maintain a large current density and stable performance. MATLAB simulation demonstrated for model simulation results in terms of output and transfer characteristics for drain current and the transconductance. The layer thickness of 200nm may result in gate leakage current points to the requirement of optimizing the t
... Show More