Computer simulations were carried out to investigate the dependence of the main perturbation parameters (Sun and Moon attractions, solar radiation pressure, atmosphere drag, and geopotential of Earth) on the orbital behavior of satellite. In this simulation, the Cowell method for accelerations technique was adopted, the equation of motion with perturbation was solved by 4th order Runge-Kutta method with step (1/50000) of period to obtain the state vectors for position and velocity. The results of this simulation have been compared with data that available on TLEs (NORD data in two line elements). The results of state vectors for satellites (Cartosat-2B, Gsat-14 and Spot-6) shows excellent correlation and this is leading us to extend our study for (spot-6) satellite to include the orbital behavior during 13000 periods under the effect of one type of perturbation or all types. The results indicate that all perturbation have clear effect on spot-6 orbit, reduced the perigee and apogee about 3 Km. during 89 days, also the time of period reduced 4.7 sec. Other conclusions present that the perigee angle increases 28.01 degree with any perturbation accept SRP. Furthermore, the geopotential have a big periodic effect but the atmospheric drag have accumulated effect on most orbital elements.
Biosignal analysis is one of the most important topics that researchers have tried to develop during the last century to understand numerous human diseases. Electroencephalograms (EEGs) are one of the techniques which provides an electrical representation of biosignals that reflect changes in the activity of the human brain. Monitoring the levels of anesthesia is a very important subject, which has been proposed to avoid both patient awareness caused by inadequate dosage of anesthetic drugs and excessive use of anesthesia during surgery. This article reviews the bases of these techniques and their development within the last decades and provides a synopsis of the relevant methodologies and algorithms that are used to analyze EEG sig
... Show MoreTwo‐dimensional buoyancy‐induced flow and heat transfer inside a square enclosure partially occupied by copper metallic foam subjected to a symmetric side cooling and constant heat flux bottom heating was tested numerically. Finite Element Method was employed to solve the governing partial differential equations of the flow field and the Local Thermal Equilibrium model was used for the energy equation. The system boundaries were defined as lower heated wall by constant heat flux, cooled lateral walls, and insulated top wall. The three parameters elected to conduct the study are heater length (7 ≤
The preparation of the title compound, C26H25N, was achieved by the condensation of an ethanolic mixture of benzaldehyde, cyclohexanone and ammonium acetate in a 2:1:1 molar ratio. There are two crystallographically independent molecules in the asymmetric unit. The two cyclohexyl rings adopt an
While the impact of the fourth Industrial Revolution on the economy keeps accelerating, the signs of the fifth industrial revolution, whose key is innovation and creativity started to evolve. However, the challenge of achieving sustainable development and its goals remains faced by the global organizations; In this situation, Islamic banks are exposed to many challenges among which is the challenge of keeping themselves abreast of the latest developments in the modern technology which in turn is a tool for continuity and competition. On the flip side, to avoid the negative impact that these changes can have such as an increased gap between financial innovations and the requirements of sustainable development. Islamic banks in the
... Show MoreAbstract
Coronavirus has affected many people around the world and caused an increase in the number of hospitalized patients and deaths. The prediction factor may help the physician to classify whether the patient needs more medical attention to decrease mortality and worsening of symptoms. We aimed to study the possible relationship between C reactive protein level and the severity of symptoms and its effect on the prognosis of the disease. And determine patients who require closer respiratory monitoring and more aggressive supportive therapies to avoid poor prognosis. The data was gathered using medical record data, the patient's medical history, and the onset of symptoms, as well as a blood sample to test the
... Show MoreThis article investigates the relationship between foot angle and jump stability, focusing on minimizing injury risk. Here are the key points: Importance: Understanding foot angle is crucial for improving jump stability, athletic performance, and reducing jump-related injuries like ankle sprains. Ideal Foot Angle: Research suggests a forward foot angle of around 15 degrees might be ideal for many people during jumps. This angle distributes forces evenly across the foot, lowers the center of gravity, and provides more surface area for pushing off the ground. Factors Affecting Ideal Angle: The optimal angle can vary depending on the type of jump (vertical vs. long jump), fitness level, and personal preference. Incorrect Foot Angles: Landing w
... Show MoreOne of the most important parameters determining structural members' durability and strength is the fire flame's influence and hazard. Some engineers have advocated using advanced analytical models to predict fire spread impact within a compartment and considering finite element models of structural components to estimate the temperatures within a component using heat transfer analysis. This paper presented a numerical simulation for a reinforced concrete beam’s structural response in a case containing Water Absorbing Polymer Spheres (WAPS) subjected to fire flame effect. The commercial finite element package ABAQUS was considered. The relevant geometrical and material parameters of the reinforced concrete beam model a
... Show MoreOne of the most important parameters determining structural members' durability and strength is the fire flame's influence and hazard. Some engineers have advocated using advanced analytical models to predict fire spread impact within a compartment and considering finite element models of structural components to estimate the temperatures within a component using heat transfer analysis. This paper presented a numerical simulation for a reinforced concrete beam’s structural response in a case containing Water Absorbing Polymer Spheres (WAPS) subjected to fire flame effect. The commercial finite element package ABAQUS was considered. The relevant geometrical and material parameters of the reinforced concrete beam model at elevated t
... Show MoreIn this work, functionally graded materials were synthesized by centrifugal technique at different
volume fractions 0.5, 1, 1.5, and 2% Vf with a rotation speed of 1200 rpm and a constant rotation time, T
= 6 min . The mechanical properties were characterized to study the graded and non-graded nanocomposites
and the pure epoxy material. The mechanical tests showed that graded and non-graded added alumina
(Al2O3) nanoparticles enhanced the effect more than pure epoxy. The maximum difference in impact strength
occurred at (FGM), which was loaded from the rich side of the nano-alumina where the maximum value was
at 1% Vf by 133.33% of the sample epoxy side. The flexural strength and Young modulus of the fu