As we live in the era of the fourth technological revolution, it has become necessary to use artificial intelligence to generate electric power through sustainable solar energy, especially in Iraq and what it has gone through in terms of crises and what it suffers from a severe shortage of electric power because of the wars and calamities it went through. During that period of time, its impact is still evident in all aspects of daily life experienced by Iraqis because of the remnants of wars, siege, terrorism, wrong policies ruling before and later, regional interventions and their consequences, such as the destruction of electric power stations and the population increase, which must be followed by an increase in electric power stations, if the summer season witnesses it. The Iraqis have a major interruption of electrical power, which forces them to buy electricity from the owners of private generators, and they are subject to their implementation and exploitation. Prices per ampere, as the price of an ampere in hot summer reaches $20, according to their desires, in addition to the environmental pollution left by those generators, as they are usually in residential neighborhoods and near homes, which increases From pollution of fresh air and the environment in residential neighborhoods, and this is what necessitated the aim of this study to find realistic solutions that are in line with the current situation that wounded Iraq is living, as it possesses enormous natural resources, and praise be to God, Lord of the Worlds. Despite all this, Iraq provides energy to most countries, and it suffers from severe power outages. Our study aims to find other alternatives to obtain renewable energy. By building more solar panels and wind turbines to play a decisive role in achieving this goal, which is to provide clean energy, especially since the climate of the Middle East in general and Iraq in particular has solar energy available throughout the year, especially in the hot summer season, and by using artificial intelligence it may be possible to store that energy and save it when needed.
The energy density state are the powerful factor for evaluate the validity of a material in any application. This research focused on examining the electrical properties of the Se6Te4- xSbx glass semiconductor with x=1, 2 and 3, using the thermal evaporation technique. D.C electrical conductivity was used by determine the current, voltage and temperatures, where the electrical conductivity was studied as a function of temperature and the mechanical electrical conduction were determined in the different conduction regions (the extended and localized area and at the Fermi level). In addition, the density of the energy states in these regions is calculated using the mathematical equations. The constants of energy density states are det
... Show MoreMicroencapsulated of paraffin wax which acts as core material of phase change
material covered by polymer was prepared by using rabid (physical-chemical) with lower
energy (green) method. Prepolymer of condensed Melamine-Formaldehyde resin, was
solidified by heat effect gradually and surrounds the Paraffin wax as microcapsules. The
diameter of the prepared capsules was about (170-220) micron which has a proportion with
the prepolymer temperature, otherwise the thermal analysis appears as a best value of
enthalpy (ΔH) which was (12 J/gm) when the prepolymer temperature was (60˚C)
Within the framework of big data, energy issues are highly significant. Despite the significance of energy, theoretical studies focusing primarily on the issue of energy within big data analytics in relation to computational intelligent algorithms are scarce. The purpose of this study is to explore the theoretical aspects of energy issues in big data analytics in relation to computational intelligent algorithms since this is critical in exploring the emperica aspects of big data. In this chapter, we present a theoretical study of energy issues related to applications of computational intelligent algorithms in big data analytics. This work highlights that big data analytics using computational intelligent algorithms generates a very high amo
... Show MoreThe melting duration in the photovoltaic/phase-change material (PV/PCM) system is a crucial parameter for thermal energy management such that its improvement can realize better energy management in respect to thermal storage capabilities, thermal conditions, and the lifespan of PV modules. An innovative and efficient technique for improving the melting duration is the inclusion of an exterior metal foam layer in the PV/PCM system. For detailed investigations of utilizing different metal foam configurations in terms of their convective heat transfer coefficients, the present paper proposes a newly developed mathematical model for the PV/PCM–metal foam assembly that can readily be implemented with a wide range of operating condition
... Show MoreIt was found that there was a significant correlation between all tests of the mechanical and electrical activity of the heart (systolic force FC, stroke volume SV, end-diastolic volume, EF volume, and left ventricular volume during diastole LVDD) with the test of the oxygen-phosphating energy system (Markaria). - As safe (Margaria-Kalamen( It was found that there is a significant correlation between all tests of the mechanical and electrical activity of the heart (myocardial systolic force FC, stroke volume SV, end-diastolic volume EDV, and the percentage of heart pumpingEF blood, and left ventricular volume during diastole (LVDD) with the Lactational Oxygen Energy System Test (Wingate Test 30 Second(
This investigation aims to explore the potential of waterworks sludge (WS), low-cost byproduct of water treatment processes, as a sorbent for removing Congo Red (CR) dyes. This will be achieved by precipitating nano-sized (MgAl-LDH)-layered double hydroxide onto the surface of the sludge. The efficiency of utilizing MgAl-LDH to modify waterworks sludge (MWS) for use in permeable reactive barrier technology was confirmed through analysis with Fourier transform infrared and X-ray diffraction. The isotherm model was employed to elucidate the adsorption mechanisms involved in the process. Furthermore, the COMSOL model was utilized to establish a continuous testing model for the analysis of contaminant transport under diverse conditions.
... Show MoreSurvival analysis is widely applied in data describing for the life time of item until the occurrence of an event of interest such as death or another event of understudy . The purpose of this paper is to use the dynamic approach in the deep learning neural network method, where in this method a dynamic neural network that suits the nature of discrete survival data and time varying effect. This neural network is based on the Levenberg-Marquardt (L-M) algorithm in training, and the method is called Proposed Dynamic Artificial Neural Network (PDANN). Then a comparison was made with another method that depends entirely on the Bayes methodology is called Maximum A Posterior (MAP) method. This method was carried out using numerical algorithms re
... Show More