This paper deals with the thirteenth order differential equations linear and nonlinear in boundary value problems by using the Modified Adomian Decomposition Method (MADM), the analytical results of the equations have been obtained in terms of convergent series with easily computable components. Two numerical examples results show that this method is a promising and powerful tool for solving this problems.
Linear Feedback Shift Register (LFSR) systems are used widely in stream cipher systems field. Any system of LFSR's which wauldn't be attacked must first construct the system of linear equations of the LFSR unit. In this paper methods are developed to construct a system of linear/nonlinear equations of key generator (a LFSR's system) where the effect of combining (Boolean) function of LFSR is obvious. Before solving the system of linear/nonlinear equations by using one of the known classical methods, we have to test the uniqueness of the solution. Finding the solution to these systems mean finding the initial values of the LFSR's of the generator. Two known generators are used to test and apply the ideas of the paper,
... Show MoreIn the tenth century, Turks began to convert into Islam and adopted for official and literary use the Arabic language to study the teachings of the new religion they believed in. The use of many of the loanwords have become absolute in the Ottoman period, but even in Modern Turkish a large number of loanwords from Arabic can be often recognized because they are not subject to the strict rules of Turkish. Yet, some of these words lost its original meaning and acquired new different Turkish meaning. Moreover, some of the Arabic nouns of singular form in Turkish, modified the plural Turkish form. The present study entitled “the adaptation and the different modifications of borrowed Arabic Plurals in Modern Turkish” sheds light on
... Show MoreThis paper provides a four-stage Trigonometrically Fitted Improved Runge-Kutta (TFIRK4) method of four orders to solve oscillatory problems, which contains an oscillatory character in the solutions. Compared to the traditional Runge-Kutta method, the Improved Runge-Kutta (IRK) method is a natural two-step method requiring fewer steps. The suggested method extends the fourth-order Improved Runge-Kutta (IRK4) method with trigonometric calculations. This approach is intended to integrate problems with particular initial value problems (IVPs) using the set functions and for trigonometrically fitted. To improve the method's accuracy, the problem primary frequency is used. The novel method is more accurate than the conventional Runge-Ku
... Show MoreMultiplicative inverse in GF (2 m ) is a complex step in some important application such as Elliptic Curve Cryptography (ECC) and other applications. It operates by multiplying and squaring operation depending on the number of bits (m) in the field GF (2 m ). In this paper, a fast method is suggested to find inversion in GF (2 m ) using FPGA by reducing the number of multiplication operations in the Fermat's Theorem and transferring the squaring into a fast method to find exponentiation to (2 k ). In the proposed algorithm, the multiplicative inverse in GF(2 m ) is achieved by number of multiplications depending on log 2 (m) and each exponentiation is operates in a single clock cycle by generating a reduction matrix for high power of two ex
... Show Moreبهذا البحث نقارن معاييرالمعلومات التقليدية (AIC , SIC, HQ , FPE ) مع معيارمعلومات الانحراف المحور (MDIC) المستعملة لتحديد رتبة انموذج الانحدارالذاتي (AR) للعملية التي تولد البيانات,باستعمال المحاكاة وذلك بتوليد بيانات من عدة نماذج للأنحدارالذاتي,عندما خضوع حد الخطأ للتوزيع الطبيعي بقيم مختلفة لمعلماته
... Show MorePlane cubics curves may be classified up to isomorphism or projective equivalence. In this paper, the inequivalent elliptic cubic curves which are non-singular plane cubic curves have been classified projectively over the finite field of order nineteen, and determined if they are complete or incomplete as arcs of degree three. Also, the maximum size of a complete elliptic curve that can be constructed from each incomplete elliptic curve are given.
A perturbed linear system with property of strong observability ensures that there is a sliding mode observer to estimate the unknown form inputs together with states estimation. In the case of the electro-hydraulic system with piston position measured output, the above property is not met. In this paper, the output and its derivatives estimation were used to build a dynamic structure that satisfy the condition of strongly observable. A high order sliding mode observer (HOSMO) was used to estimate both the resulting unknown perturbation term and the output derivatives. Thereafter with one signal from the whole system (piton position), the piston position make tracking to desire one with a simple linear output feedback controller after ca
... Show More