We define and study new ideas of fibrewise topological space on D namely fibrewise multi-topological space on D. We also submit the relevance of fibrewise closed and open topological space on D. Also fibrewise multi-locally sliceable and fibrewise multi-locally section able multi-topological space on D. Furthermore, we propose and prove a number of statements about these ideas.
The research deals with one of the urban problems facing cities, namely the existence of neglected urban spaces that need to be activated , These spaces give a negative image of the city, is not conducive to life and social interactions or the city has a one distinctive urban experience, leading to a reduction peoples' confidence in revisiting of those areas, hinder the rest of the activities in that region . Because these spaces are of the basic components of the city and give it its identity through the elements and entities that constitute it , The idea of research emerged in the reclaiming of these spaces within contemporary urban trends and the activation of flexible , short-term and inovation for that purpose with
... Show MoreR. Vasuki [1] proved fixed point theorems for expansive mappings in Menger spaces. R. Gujetiya and et al [2] presented an extension of the main result of Vasuki, for four expansive mappings in Menger space. In this article, an important lemma is given to prove that the iteration sequence is Cauchy under suitable condition in Menger probabilistic G-metric space (shortly, MPGM-space). And then, used to obtain three common fixed point theorems for expansive type mappings.
Topology and its applications occupy the interest of many researching centers in the advanced world. From this point of view and because the near open sets play a very important role in general topology and they are now the research topics of many topologists worldwide and its sets doesn’t enter in fibrewise topology yet. Therefore, we use some of the near open sets to be model for introduce results and new spaces in fibrewise topological spaces. Also, there is a very important role of closure operators in constructing a topological spaces, so we introduce a new closure operators on the power set of vertices on graphs and conclusion theorems and new spaces from it. Furthermore, we discuss the relationships of connectedness between some ty
... Show Moresensor sampling rate (SSR) may be an effective and crucial field in networked control systems. Changing sensor sampling period after designing the networked control system is a critical matter for the stability of the system. In this article, a wireless networked control system with multi-rate sensor sampling is proposed to control the temperature of a multi-zone greenhouse. Here, a behavior based Mamdany fuzzy system is used in three approaches, first is to design the fuzzy temperature controller, second is to design a fuzzy gain selector and third is to design a fuzzy error handler. The main approach of the control system design is to control the input gain of the fuzzy temperature controller depending on the cur
... Show More<p>In this paper, we prove there exists a coupled fixed point for a set- valued contraction mapping defined on X× X , where X is incomplete ordered G-metric. Also, we prove the existence of a unique fixed point for single valued mapping with respect to implicit condition defined on a complete G- metric.</p>
In the present study, Čech fuzzy soft bi-closure spaces (Čfs bi-csp’s) are defined. The basic properties of Čfs bi-csp’s are studied such as we show from each Čfs bi-csp’s (
In this paper We introduce some new types of almost bi-periodic points in topological bitransfprmation groups and thier effects on some types of minimaliy in topological dynamics
The basic concepts of some near open subgraphs, near rough, near exact and near fuzzy graphs are introduced and sufficiently illustrated. The Gm-closure space induced by closure operators is used to generalize the basic rough graph concepts. We introduce the near exactness and near roughness by applying the near concepts to make more accuracy for definability of graphs. We give a new definition for a membership function to find near interior, near boundary and near exterior vertices. Moreover, proved results, examples and counter examples are provided. The Gm-closure structure which suggested in this paper opens up the way for applying rich amount of topological facts and methods in the process of granular computing.