The convolutional neural networks (CNN) are among the most utilized neural networks in various applications, including deep learning. In recent years, the continuing extension of CNN into increasingly complicated domains has made its training process more difficult. Thus, researchers adopted optimized hybrid algorithms to address this problem. In this work, a novel chaotic black hole algorithm-based approach was created for the training of CNN to optimize its performance via avoidance of entrapment in the local minima. The logistic chaotic map was used to initialize the population instead of using the uniform distribution. The proposed training algorithm was developed based on a specific benchmark problem for optical character recognition applications; the proposed method was evaluated for performance in terms of computational accuracy, convergence analysis, and cost.
This study uses an Artificial Neural Network (ANN) to examine the constitutive relationships of the Glass Fiber Reinforced Polymer (GFRP) residual tensile strength at elevated temperatures. The objective is to develop an effective model and establish fire performance criteria for concrete structures in fire scenarios. Multilayer networks that employ reactive error distribution approaches can determine the residual tensile strength of GFRP using six input parameters, in contrast to previous mathematical models that utilized one or two inputs while disregarding the others. Multilayered networks employing reactive error distribution technology assign weights to each variable influencing the residual tensile strength of GFRP. Temperatur
... Show MoreImitation learning is an effective method for training an autonomous agent to accomplish a task by imitating expert behaviors in their demonstrations. However, traditional imitation learning methods require a large number of expert demonstrations in order to learn a complex behavior. Such a disadvantage has limited the potential of imitation learning in complex tasks where the expert demonstrations are not sufficient. In order to address the problem, we propose a Generative Adversarial Network-based model which is designed to learn optimal policies using only a single demonstration. The proposed model is evaluated on two simulated tasks in comparison with other methods. The results show that our proposed model is capable of completing co
... Show MoreMany academics have concentrated on applying machine learning to retrieve information from databases to enable researchers to perform better. A difficult issue in prediction models is the selection of practical strategies that yield satisfactory forecast accuracy. Traditional software testing techniques have been extended to testing machine learning systems; however, they are insufficient for the latter because of the diversity of problems that machine learning systems create. Hence, the proposed methodologies were used to predict flight prices. A variety of artificial intelligence algorithms are used to attain the required, such as Bayesian modeling techniques such as Stochastic Gradient Descent (SGD), Adaptive boosting (ADA), Decision Tre
... Show MoreMany academics have concentrated on applying machine learning to retrieve information from databases to enable researchers to perform better. A difficult issue in prediction models is the selection of practical strategies that yield satisfactory forecast accuracy. Traditional software testing techniques have been extended to testing machine learning systems; however, they are insufficient for the latter because of the diversity of problems that machine learning systems create. Hence, the proposed methodologies were used to predict flight prices. A variety of artificial intelligence algorithms are used to attain the required, such as Bayesian modeling techniques such as Stochastic Gradient Descent (SGD), Adaptive boosting (ADA), Deci
... Show MoreUpper limb amputation is a condition that severely limits the amputee’s movement. Patients who have lost the use of one or more of their upper extremities have difficulty performing activities of daily living. To help improve the control of upper limb prosthesis with pattern recognition, non-invasive approaches (EEG and EMG signals) is proposed in this paper and are integrated with machine learning techniques to recognize the upper-limb motions of subjects. EMG and EEG signals are combined, and five features are utilized to classify seven hand movements such as (wrist flexion (WF), outward part of the wrist (WE), hand open (HO), hand close (HC), pronation (PRO), supination (SUP), and rest (RST)). Experiments demonstrate that usin
... Show MoreSince the human being knew simulation as an expressive style of expressing himself which developed into dramatic arts that have their aesthetic uniqueness involving their own constructive techniques, the art of the theatre had a pioneering role in the development of the human awareness of himself. That’s why it was and still is in all its aesthetic manifestations a free space for the self –disclosure thus man has been simulated as he is the main theme of the existence and its main wealth. Thus the interest in the child's theatre began, because this theatrical pattern has its effectiveness in the construction of the human self and enabling it to be a productive source for a life that accommodates and elevates the human action t
... Show MoreThe process of employing modern technology in a consistent manner is what the researcher is interested in, and the psychological role of the sound effect in enhancing psychopathic representations in cinematic characters, which had a wide resonance in the field of cinematic films, and after the predominance of digital technology in the production of contemporary films, the sound effect has a higher efficiency And a good level of advanced aesthetic and dramatic expression in film employment, so many directors resorted to this type of films by using various new and advanced techniques and technological programs in their industry, since the traditional construction does not achieve the dazzling that the viewer desires.
Accordingly, th
... Show MoreOne of the most prevalent phenolic compounds found in olive leaves is oleuropein. Numerous studies have demonstrated the biologically significant effects of this compound, including anti-inflammatory, anti-atherogenic, anticancer, antimicrobial, and antiviral effects, which has led to its increased attention in the scientific community. Oleuropein can be recovered and purified (mostly by chromatographic techniques) from a variety of sources using both conventional and non-conventional methods. It can then be applied in a number of contexts. Because of its numerous pharmacological properties, oleuropein is commercially obtainable as a food enhancement in Mediterranean countries. Numerous scientific and clinical investigations have d
... Show More